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A Contribution to the System-Theoretic Approach
to Bandwidth Estimation
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Abstract—The network calculus provides a theoretical back-
ground for description of traffic in computer networks. Using
this tool in explanation of the so-called pathchirp method of
measuring the available bandwidth, the validity and range of
application of some relationships exploited are verified in this
paper. The derivations are carried out in a wider context than
that considered in a recent paper by Liebeherr et al. published in
IEEE/ACM Transactions on Networking on network bandwidth
estimation, providing thereby new insights and outcomes. These
results, summarized in a table, show a means of bounding the
service curve, depending upon its convexity or non-convexity
property assumed and upon the linearity or non-linearity of
a network considered. Moreover, it is shown here that the
nonlinear network example analyzed by Liebeherr et al. can
be viewed equivalently as a linear parametric network. For this
network, the behaviour of the cross traffic is considered in a more
detail, too.

Keywords—network calculus, rate chirps, bandwidth estima-
tion, nonlinear and/or linear parametric traffic systems

I. INTRODUCTION

AVAILABLE bandwidth estimation is needed for several
important tasks in computer networks. A route selection

in some routing processes, traffic management and embedded
QoS mechanisms – these are just some of many. Available
bandwidth means unused bandwidth along an end-to-end con-
nection. In the recent years, we observe a particular growth in
diversity of overlay networks. It requires continuous research
work on quality of service providing. There are many methods
of available bandwidth estimation that are passive or use active
probing, as for example IGI [1], Pathchirp [2], Pathload [3],
TOPP [4]. Note that we require of these probing tools that
they are accurate, fast and do not cause a noticeable load in
the network.

All modern methods of bandwidth estimation in networks
published in the literature can be nicely described using the
network calculus technique, as it has been shown by Liebeherr
et al. in [5]. The network calculus is an approach to network
traffic analysis and optimization that uses the so-called min-
plus algebra [6]. One of the fundamental notions in it is the
service curve of a traffic system (node, path). This curve, as
Liebeherr et al. [5] show, expresses the system’s available
bandwidth. If it is a straight line, this corresponds to a constant
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bit rate (constant bandwidth). However, it can be also a more
complex function; in this case, it describes a variable rate
(bandwidth). So, the problem of finding the available band-
width can be formulated equivalently as a problem of finding
a service curve. And in such a way, it is dealt with in [5], and
also here.

It is assumed that the service curve of a given traffic
system (node, path) is unknown. So our task is to evaluate
it by applying a single probing packet sequence or multiple
sequences to the system’s input, and afterwards carrying
out some measurements. Here, we consider only one of the
possible methods that use a single packet train, but with the
geometrically decreasing lengths of the packets consisting
of the same number of bits. Note that this corresponds to
increasing the transmission rate, giving the name to that
sequence: rate chirp. Furthermore, we stress on the fact that
the rate chirp is introduced in measurements intentionally, that
is these measurements have an active character.

In this paper, we extend the results regarding the rate chirp
method, presented by Liebeherr et al. [5], by consideration
of the possible cases of service curve estimation: when the
service curve is convex or non-convex, and when the traffic
system is linear or nonlinear. The detailed derivations for all
the four possibilities are presented, and the final results are
summarized in a table.

The second problem discussed in [5], that is of nonlinear
behaviour of a traffic system, is dealt with here, too. We show
in this paper that the nonlinear network example analyzed in
[5] can be viewed equivalently as a linear parametric system. It
is a valuable observation. And, on this occasion, the behaviour
of the cross traffic in the aforementioned network example is
considered in a more detail, too.

This paper is organized as follows. Section II presents the
main network calculus operations needed in understanding the
material of the next sections. In Section III, the problem of
network bandwidth estimation is formulated in terms of the
min-plus algebra. Further, in the next section, the Legendre
transform is shortly described. It is used in derivations of
this paper for description of the min-plus systems in the so-
called rate domain. The Section V contains the main results
regarding solutions of the estimation problem in the four cases
mentioned before. In the next section, the original results
referring to an equivalent description of a nonlinear traffic
system as a parametric linear one are presented. Additionally,
the results regarding the behaviour of the cross traffic in such
a system are given. The last section contains summary and
conclusions.
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II. NETWORK CALCULUS TECHNIQUE

Network calculus is a mathematical framework for ana-
lyzing performance guarantees in computer networks. This
technique is based on min-plus algebra in which operation of
addition is replaced by calculation of minimum, but operation
of multiplication is replaced by the addition. In this approach,
we consider a network as a min-plus linear or nonlinear system
that converts input signals into output signals. If we want to
provide guarantees to data flows, we have to limit the traffic
that is sent by source nodes. It can be done by arrival curves.

Let A(t) be an input traffic function, and D(t) be the
corresponding output traffic function. These functions are also
called the arrival and departure traffics, respectively; they are
illustrated in Fig. 1. A(t) and D(t) represent the cumulative
number of bits observed in the interval [0, t], with 0 meaning
the beginning time instant and t the ending time instant,
respectively, of the traffic probe considered. Furthermore,
denote by S(t) a service curve relating the traffics A(t) and
D(t).

Fig. 1. Example of arrival and departure traffic functions.

In the linear traffic systems, we have the following relation
between A(t) and D(t) [2,3,10]

D = A⊗ S, (1)

where ⊗ is a convolution operator defined by

(A⊗ S)(t) = inf
0≤τ≤t

{A(τ) + S(t− τ)}. (2)

For the non-linear system, instead of (1), we write

D ≥ A⊗ S. (3)

Note that writing D ≥ A ⊗ S as in (3) means that there are
certainly such times t for which D > A ⊗ S holds. But, in
this case, the times for which D = A ⊗ S may, eventually,
also occur. Opposite to this, when we write D = A⊗S means
that this equality holds for all times and for all pairs A, D.

III. BANDWIDTH ESTIMATION PROBLEM IN MIN-PLUS
ALGEBRA

We view a network as a min-plus linear or non-linear
system that converts input signals (arrivals) into output signals
(departures) according to a fixed but unknown service curve
S [5]. The service curve expresses the available bandwidth.

The estimation method considered here is a measurements
oriented one. That is, first, a scenario for carrying out the

needed measurements is thought out in such a scheme. Then,
the measuring concept is implemented, and the data obtained
in measurements are recorded. Finally, using this data, the
estimation of the service curve is performed.

Note that two points in this general scheme are crucial: the
choice of the form of the probing input traffic sequence and
the choice of the means of estimation. We will discuss the
choices made for the pathchirp method in Section V.

In the literature [5], one defines and uses the lower and
upper bounds for the cumulative traffic. That is, considering
the output traffic function D(t) and the service curve S(t),
we can write D(t) ≥ (A ⊗ S)(t) and D(t) ≤ (A ⊗ S)(t),
where S stands for a lower, but S for an upper service curve,
respectively. More precisely, among those nondecreasing func-
tions that lowerbound D(t), we choose for S(t) the one that
maximizes the bound (A⊗S)(t). Similarly, for S, we choose
this nondecreasing function that minimizes the upper bound
(A ⊗ S)(t). So, in this context, we understand the service
curve S(t) as S in the case of ineq. (3). Further, in the case
of eq. (1), we have S(t) = S = S. (Such the service curve is
called an exact service curve [5].)

Now take into account the difference between the left- and
right-hand sides in (1) or (3) and denote it by U(t). Using
this, we can write

U(t) = D(t)− (A⊗ S)(t) = 0 (4)

in the case of (1), and

U(t) = D(t)− (A⊗ S)(t) ≥ 0 (5)

in the case of (3), respectively.
Looking at (4) and (5), we see that it is possible to treat

both the cases in the same way, formulating the approximation
(estimation) problem for S(t) as: given A(t) and D(t), search
for a possibly maximal approximate (estimate) Sm(t) of S(t)
such that U(t) containing Sm instead of unknown S is always
greater or equal to zero, and it is minimized towards zero.

IV. LEGENDRE TRANSFORM IN MIN-PLUS SYSTEMS

In min-plus systems, the Legendre transform of a function
f(t) for t ≥ 0 is defined as

Lf (r) = sup
τ≥0
{rτ − f(τ)}

where r is interpreted as a rate and r ≥ 0. This transform
converts a convolution to an addition. That is we get

Lf∗g = Lf + Lg. (6)

In general, the following two relations

L(Lf ) ≤ f (7)

and
L(Lf ) = convf (8)

hold, where convf means the convex hull of f that is defined
as the largest convex function smaller than f . And the convex
function f can be obtained by performing the Legendre
transform twice. That is

L(Lf ) = f. (9)
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Moreover, the Legendre transform reverses an inequality order
in the sense explained below

f ≥ g ⇒ Lf ≤ Lg. (10)

If g in (10) is convex, the relation therein becomes an
equivalency.

V. RATE CHIRPS METHOD IN MIN-PLUS SYSTEM

The means of building and shape of the probing traffic
in any active method of network bandwidth estimation is
important because it has influence on the method accuracy
and time of estimation. The pathchirp method (rate chirps
technique) [2] uses only a single sequence of packets as
the probing traffic. This makes it faster than the methods
exploiting multiple sequences of packets transmitted with
different rates (changing at some range), as for example the
rate scanning method [3]. The variable rate is realized in the
pathchirp method by construction of the packet sequence as
a packet train with a geometrically decreasing lengths of the
packets consisting of the same number of bits. It is called
then a chirp packet train; such a one is illustrated in Fig. 2.
For more details, see for example [2].

Fig. 2. Illustration of the chirp packet train with decreasing time intervals
ti between the first bits of the consecutive packets.

It has been shown by Liebeherr et al. in [5] that the
estimation procedure of service curve estimation applied in the
pathchirp method can be explained in terms of the network
calculus, shortly saying, as performing twice the Legendre
transform. In [5], the validity of this result has been restricted
to only one case in which it is assumed that the estimated
service curve is convex and the network analyzed is linear (in
the sense of the min-plus algebra). Here, we consider the next
three possible cases and show that the results then achieved
may be also reasonable. In particular cases, their accuracy may
not even be worse than that we get in the case considered in
[5]. A simple criterion of the reasonableness of an estimate
achieved is given.

Let us now list all the four possible cases:
1) system is min-plus linear and S is convex,
2) system is min-plus linear and S is non-convex,
3) system is min-plus non-linear and S is convex,
4) system is min-plus non-linear and S is non-convex.
In what follows, we show how the estimation procedure

works in each of the aforementioned cases. As the final result
of derivations, in each case, we get an information on means
of bounding the actual service curve by its estimate.

Case 1. This case has been described in [5]. It is reasonable
to remind it here for the sake of completeness. If a system is

linear, then (1) holds. Applying the Legendre transform to (1),
we obtain

LD = LA∗S = LA + LS . (11)

Further, rearranging the terms in (11), we get

LD − LA = LS . (12)

In the next step, applying the Legendre transform to both sides
of (12) gives

L(LS) = L(LD − LA). (13)

And finally, because of the assumed convexity of S in this
case, we can use (7) on the right-hand side of (13). This results
in

S = L(LD − LA). (14)

In what follows, interpretation and usage of (14) is more
general than that given above. The right-hand side of this
equation is treated as an approximating (estimating) formula
for calculation of the approximate (estimate) of a service
curve S, indepedently of the fact whether the aforementioned
assumptions regarding linearity and convexity are fullfilled or
not, and in the cases of modifications undertaken, too.

Let us now consider an ideal chirp packet train understood
as such a one that allows transmission of its consecutive
packets with the rates going to infinity. Denote the arrivals
and departures associated with this chirp packet train by Achrp

and Dchrp, respectively, and by S̃ the service curve estimate
calculated for it using (14). That is

S̃ = L(LDchrp − LAchrp). (15)

Since in this case S is convex, we have obviously S̃ = S.
In practice, realization of the transmission rates going to

infinity, for the chirp train packets, is not possible. This is
because the chirp packets cannot be transmitted faster than
the maximal rate of data sending by the packet sender. For
this reason, some modifications of the probing scheme based
on rate chirps have been made in [5]. For practical purposes,
the following extrapolations of the chirp arrival and departure
functions have been undertaken [5]

Ãchrp(t) =

{
Achrp if 0 ≤ t ≤ tAmax
∞ if t > tAmax

(16)

D̃chrp(t) = (17)

=

{
Dchrp if 0 ≤ t ≤ tDmax

Dchrp(tDmax) + (t− tDmax)dD
chrp

dt (tDmax) if t > tDmax

where it is assumed that a packet chirp is transmitted in a time
interval [0, tAmax] and D is observed over an interval [0, tDmax].
Note that after setting the value of the arrival function to
∞ past the last measurement at time tAmax, we meet the
requirement that LA(r) < ∞. An example of the convex
function Ãchrp is sketched in Fig. 3.

Let us now denote by S∗ an estimate of S obtained by
substituting the functions Ãchrp(t) and D̃chrp(t) given by (16)
and (17) into estimating formula (14). We will show that the
following

S∗ ≤ S = S̃
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holds. That is S∗ is a lower bound of S.
Further, denote the departure function that corresponds to

the arrival function Ãchrp by D∗. Obviously, this function is
not identical with D̃chrp.

Fig. 3. Example of convex function Ãchrp.

Fig. 4. Illustration of the relation between the functions D∗ and D̃chrp. In
the range from from 0 to tDmax, they overlap each other.

The pairs (Ãchrp,D∗) fulfill eq. (14). That is

S = L(LD∗ − LÃchrp)

holds.
In [5], it has been shown that D̃chrp ≤ D∗ in case 1. This is

illustrated in Fig. 4, and means that D̃chrp is a lower bound for
departures that correspond to arrivals Ãchrp. From the order-
reversing property of Legendre transform (10) applied to the
last inequality, we get

LD̃chrp ≥ LD∗

and further

LD̃chrp − LÃchrp ≥ LD∗ − LÃchrp . (18)

Finally, applying (10) once again, now to (18), we obtain

S∗ = L(LD̃chrp − LÃchrp) ≤ S. (19)

Inequality (19) states that the estimate S∗ of the service curve
S is its lower bound in case 1.

Case 2. In this and the remaining two cases, we re-
peat the successive steps regarding the pairs (Achrp,Dchrp),
(Ãchrp,D∗), and (Ãchrp,D̃chrp) as it was done in case 1. So
now, because the network considered is linear similarly as in
case 1, we have

L(LS) = L(LD − LA).

However, in this case, opposite to the previous one S is
assumed to be non-convex. Therefore, it follows from (7) that

S ≥ L(LS) = L(LDchrp − LAchrp) = S̃ (20)

where S̃ is the convex hull of S, according to (8). So
recapitulating (20), we write

S ≥ S̃. (21)

(21) means that the equality between S and S̃ does not hold
now. It is clear from the definition of Ãchrp that

Ãchrp ≥ Achrp.

Hence, we receive from (10)

LÃchrp ≤ LAchrp .

Note now that because S is non-convex each of the following
inequalities

D̃chrp ≤ D∗ or D̃chrp ≥ D∗

can hold. However, considering the above inequalities in
this case and case 4, we restrict ourselves to only such the
situations that have practical meaning. That is when we write
D̃chrp ≤ D∗, it means that this inequality holds for all
times t ≥ 0. And similarly, writing the inverse inequality
D̃chrp ≥ D∗ means its fulfillment for all times t ≥ 0. In other
words, when one of the above inequalities is satisfied, this
excludes satisfaction of the second one (except, of course, of
such times for which D̃chrp = D∗ holds). Referring to Fig. 4,
two examples of such the functions D∗ as described above are
illustrated in Fig. 5.

Fig. 5. Illustration of the class of functions D∗ considered: an example of
D∗

1 being convex and another one being non-convex.

It means that

LD̃chrp ≥ LD∗ or LD̃chrp ≤ LD∗

are possible. Subtract now LÃchrp on both sides of the above
inequalities. We obtain

LD̃chrp − LÃchrp ≥ LD∗ − LÃchrp (22)

or the inverse inequality. Applying then (10) to (22), we get

L(LD̃chrp − LÃchrp) ≤ L(LD∗ − LÃchrp) (23)
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or the inverse inequality. In the next step, using the definition
of S∗ given on the left-hand side of (19), and applying (13)
with (7) in (23) or in the inverse inequality, we get

S∗ ≤ convS ≤ S (24)

or
S∗ ≥ convS ≤ S (25)

respectively. In summary of case 2, we can rewrite (21), (24),
and (25) as

S ≥ S̃ and S∗ ≤ convS ≤ S,

or

S ≥ S̃ and S∗ ≥ convS ≤ S.

Looking at the above relations, we see that the ideal chirp
approximate S̃ of S is its lower bound. With regard to the
(practical) calculated estimate S∗ of S, however, we are not
certain whether we get a lower or an upper bound of S.

Case 3. If the system is non-linear, then D ≥ A ⊗ S.
Therefore, instead of (13), we have now

L(LS) ≤ L(LD − LA).

This relation is true in particular for pairs (Achrp, Dchrp).
In this case, S is convex. So, it follows from the above, (8),

and the definition of S̃

S = L(LS) ≤ L(LDchrp − LAchrp) = S̃.

It means that S̃ is an upper bound of S.
Here, as in case 1, we have ˜Dchrp ≤ D∗. This fact and

the assumed convexity of S cause that the next steps to be
carried out are the same as the corresponding ones in case
1. In consequence, we get S∗ ≤ S. So, in summary, we can
write

S∗ ≤ S ≤ S̃.

Thereby, we have shown that the calculated estimate S∗ of
S is its lower bound in case 3. Moreover, the ideal chirp
approximate S̃ is then an upper bound of S.

Case 4. In this case, S is non-convex. So, we have

S ≥ L(LS) ≤ L(LDchrp − LAchrp) = S̃.

In other words, we have shown that

S ≥ convS and S̃ ≥ convS .

So, we can say nothing about the relation between S and S̃.
And we conclude that both the inequalities

S ≥ S̃ or S ≤ S̃

are possible in case 4.
Searching for a relation between S∗ and S goes in this

case along the corresponding lines of case 2 and with the
use of relation L(LS) ≤ L(LD − LA) applied to the pairs
(Ãchrp,D∗). We arrive then at the result that both the following
inequalities

S∗ ≤ L(LD∗ − LÃchrp) ≥ convS ≤ S

or

TABLE I
SUMMARY OF STUDY CASES

Linear system
D = A⊗ S

Non-linear system
D ≥ A⊗ S

Service curve S
convex

S∗ ≤ S

lower bound
calculated

S∗ ≤ S

lower bound
calculated

Service curve S
non-convex

S∗ ≤ S
or

S ≤ S∗

not known
whether

lower or upper
bound calculated

S∗ ≤ S
or

S ≤ S∗

not known
whether

lower or upper
bound calculated

S∗ ≥ convS ≤ S

are possible. They show how complicated is this case. From
the above, we conclude only that each of the two cases

S∗ ≤ S or S∗ ≥ S

can happen in case 4.
Summary of all the cases has been presented in Tab. I.
Let us now substitute S∗ instead of S in (4) and (5) and

denote the resulting U(t) as U∗(t), that is

U∗(t) = D(t)− (A⊗ S∗)(t).

Further, note that for the two cases of the first line of Tab. I,
we have S∗ ≤ S. Performing the convolution operation on
both sides of this inequality (using one of the rules given in
[6]), we get A⊗ S∗ ≤ A⊗ S. Hence, when (4) or (5) holds,
then certainly U∗(t) ≥ 0 is satisfied for all times t ≥ 0.
This means that the estimate S∗ calculated in case 1 and 3 is
found in accordance with the lines of the estimation procedure
described at the end of Section III.

With regard to the second line of Tab. I, the situation is
more complicated. However, intuitively, we can assume that
when U∗(t) ≥ 0 for each t ≥ 0 holds, then the calculated
estimate S∗ is reasonable in cases 2 and 4.

One remark more: It can happen in practice that we know
nothing about a network (that is about its linearity and of its
service curve convexity). In such a general case, the condition
of U∗(t) ≥ 0 for each time t ≥ 0 can play a very useful role
of the estimate reasonableness, indepedently of whether S∗

calculated constitutes a lower or an upper bound of S (which
is unknown for us).

VI. NONLINEARITY

In [5], it has been shown how to model the FIFO system
with capacity C, illustrated schematically in Fig. 6, in a wide
range of traffic intensities. The model proposed by Liebeherr et
al. [5] consists of two separate descriptions. First of them holds
for small (mild) traffic loads (intensities) and is given by (1).
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But, the second expressed by (3) is used, when the loads are
large (leading to network overloading). In other words, the
FIFO system works in a linear region of operation, when its
traffic loading is small (mild). But, when this loading is high,
it works in non-linear region of operation.

Fig. 6. A scheme of the FIFO system with capacity C and depicted input
and output through and cross traffics.

So, the FIFO system after the model presented in [5]
works linearly or nonlinearly, depending upon the value of
network loading (traffic intensity). In this section, we present
an alternative model of the FIFO system which is linear in
both the regions of values of the traffic intensities mentioned
above. Characteristic for it is, however, the fact that it is non-
parametric for mild loads. But, for larger loads, being still
linear, it becomes parametric one. Then, it begins to depend
upon the parameters of the cross traffic.

To verify experimentally the relation given in [5] for the
output through traffic at the FIFO system working with the
constant bit rate (CBR) through and cross traffics, we have
built a measuring setup shown in Fig. 7.

Fig. 7. The measuring setup used in measurements of the output through
traffic for different rates of the input through traffic, in the presence of the
constant rate rc of the input cross traffic.

The FIFO system of Fig. 7 had the capacity C = 10 Mbps.
In our all measurements carried out, this system experienced
the CBR cross traffic with the rate rc = 5 Mbps sent in 625-
byte packets. The input through traffic applied to the system
was in accordance with the linear relation A(t) = rt, where
the rates r changed as follows: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10
Mbps. The probing traffic packets had the lengths ranging
from 125 to 1250 bytes, depending on the probing rate r. For
each of the above rate, five measurements were carried out
and afterwards the median filtering was applied to eliminate
possible “outliers”.

The results of the measurements described above are sum-
marized in Tab. II. Using this data, the experimental relation-
ship between the input through traffic rates and the throughput
for the output through traffic has been found and is illustrated
in Fig. 8.

Fig. 8. Experimental relationship between throughput and arrival through
traffic rate.

TABLE II
PROBING TRAFFIC ARRIVAL RATE AND THROUGHPUT

Arrival rate Throughput
[Mbps] [Mbps]
1,000 1,000
2,000 2,000
3,000 3,000
4,000 3,999
5,000 4,709
6,000 5,211
7,000 5,642
8,000 6,016
9,000 6,301
10,00 6,451

In [7], the output through traffic for the scenario described
above and exploited in the measurements resulting in the data
of Tab. II and curve of Fig. 8 is modeled by the following
relations

D(t) =

{
rt if r ≤ C − rc
r

r+rc
Ct if r > C − rc.

(26)

The relations (26) are interpreted in [5] in the following
way: as the probing traffic rate does not exceed the threshold
rate rmax = C−rc, the output traffic depends upon it linearly.
That is when r ≤ rmax holds. Outside this range, that is for
r > rmax, it is assumed to behave nonlinearly.

In what follows, we show that the FIFO system considered
behaves linearly in both the regions of values of r mentioned
above. To this end, consider first the range of r ≤ rmax and
apply (1) and (2) with A(t) = rt and a presumed form of the
service curve S(t) = rmaxt. In consequence, we get

D(t) = inf
0≤τ≤t

{rτ + rmax(t− τ)} =

= inf
0≤τ≤t

{rτ + rmaxt− rmaxτ)} =

= inf
0≤τ≤t

{rmaxt+ rτ − rmaxτ)} =

= inf
0≤τ≤t

{rmaxt+ τ(r − rmax)} =

= rmaxt+ t(r − rmax) = rt
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because r− rmax ≤ 0. Hence, we conclude that the presumed
S(t) = rmaxt describes correctly the considered region of
operation.

Let us now take into account the range of r > rmax,
applying (1) and (2) as before with A(t) = rt, but a new
presumed form of the service curve

S(t) =
r

r + rc
Ct. (27)

As a result, we obtain in this case

D(t) = inf
0≤τ≤t

{A(τ) + S(t− τ)} =

= inf
0≤τ≤t

{
rτ +

r

r + rc
C(t− τ)

}
=

= inf
0≤τ≤t

{
rτ +

rCt

r + rc
− rCτ

r + rc

}
=

= inf
0≤τ≤t

{
rCt

r + rc
+ τ(r − rC

r + rc
)

}
=

= inf
0≤τ≤t

{
rCt

r + rc
+ τ

r

r + rc
(r + rc − C)

}
=

= inf
0≤τ≤t

{
rCt

r + rc
+ τ

r

r + rc
(r − rmax)

}
=

=
rCt

r + rc

because now r > rmax. So the chosen S(t) given by (27) is
correct for the above range of values of r > rmax.

In summary, we conclude that the FIFO system treated as
a linear network possesses the following service curve

S(t) =

{
rmaxt if r ≤ rmax
r

r+rc
Ct if r > rmax.

(28)

Observe from (28) that the slope of the linear function S(t)
of a variable t for the range r > rmax,

rC

r + rc
,

depends upon the parameter r characterizing the input through
traffic. So, the FIFO system behaves then as a linear parametric
system (its characteristic is “modulated” by the parameters of
the input traffic).

The conclusions drawn above are illustrated in Fig. 9, where
the functions A(t), D(t), and S(t) are sketched for three cases:
mildly-loaded (linear), transition point (r = rmax), and over-
loaded (non-linear) ones, for comparison.

Further, observe from (26) that the modeled relation be-
tween the input through traffic rate r and its throughput is as
follows

throughput =
{

r if r ≤ rmax
rC
r+rc

if r > rmax.
(29)

The function given by (29) is sketched in Fig. 10.
Observe that the theoretical (modeled) curve of Fig. 10

differs slightly from the experimental one shown in Fig. 8.
The largest differences between the curves occur in the neigh-
bourhood of r = rmax, where we have to do with the transition

Fig. 9. Comparison of the functions A(t), D(t), and S(t) for the FIFO
system for three cases: mildly-loaded (linear), transition point (r = rmax),
and over-loaded (non-linear) ones.

Fig. 10. Sketch of the modeled function of throughput versus r.

between the linear and non-linear regions of operation. In the
model discussed, this transition region is very sharp, in fact
reducted to only one point r = rmax. Opposite to this, as
Fig. 5 shows, the real transition region means a mild passing.

Coming back to (28), note that this relation can be expressed
equivalently as

Sp(t) = [rmax ∨
rC

r + rc
]t (30)

where the symbol ∨ means a larger of two given values.
Evidently, Sp(t) given by (30) depends on r, being the
parameter of the input through traffic. This is in opposition
to the form of the service curve

Sfifo(t) = [C − rc]+t = [rmax]
+t (31)

where [x]+ = max(0, x), provided in [5]. The non-parametric
service curve given by (31), Sfifo(t), when applied in (1) with
(2) or in (1) with (3), depending upon the value of the rate
r, separates from each other the linear and non-linear regions
of operation according to the model of [5]. This is shown in
detail in Appendix.

Let us now formally check whether the parametric model of
the FIFO system given by (30) is really linear. For this purpose,
we use the linearity principle as defined in [5], starting with
formulation of the input through traffic in the following form

(a+A1(t)) ∧ (b+A2(t))
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where A1(t) = r1t and A2(t) = r2t, and ∧ means the infimum
operation. Then, we calculate the following

D∧(t) = inf
0≤τ≤t

{(a+A1(τ)) ∧ (b+A2(τ)) + Sp(t− τ)} =

= inf
0≤τ≤t

{inf
2
{a+A1(τ) + Sp(t− τ),

b+A2(τ) + Sp(t− τ)}} =

= inf
2
{ inf
0≤τ≤t

{a+A1(τ) + Sp(t− τ)},

inf
0≤τ≤t

{b+A2(τ) + Sp(t− τ)}} =

= inf
2
{a+ inf

0≤τ≤t
{A1(τ) + Sp(t− τ)},

b+ inf
0≤τ≤t

{A2(τ) + Sp(t− τ)}} =

= inf
2
{a+D1(t), b+D2(t)}

where
D1(t) = r1t or D1(t) =

r1
r1 + rc

Ct

and
D2(t) = r2t or D2(t) =

r2
r2 + rc

Ct

accordingly. In summary, we can rewrite the final result of the
above derivation as

D∧((a+A1(t)) ∧ (b+A2(t))) = (a+D1(t)) ∧ (b+D2(t)).

This means that the linearity principle is fulfilled in the case
of the parametric model.

Finally, it would be also interesting to consider, even shortly,
relations regarding servicing the cross traffic. Note that such
the relations have not been discussed in [5] at all. To this end,
let us start with finding a service curve for the cross traffic in
the linear region of operation. Having the previous derivations
for the through traffic in mind, it seems that the function

Scl(t) = rmaxct

where rmaxc = C − r, is a proper service curve for the
cross traffic path in the linear region of operation of the FIFO
system. We check this in what follows. For r ≤ C − rc, we
have

(rct)⊗ Scl(t) = inf
0≤τ≤t

{rcτ + rmaxc(t− τ)} =

= inf
0≤τ≤t

{(rc − rmaxc)τ + rmaxct} =

= (rc − rmaxc)t+ rmaxct = rct.

Therefore

Dc(t) = (rct)⊗ Scl(t)

really holds.
For the non-linear region of operation, we expect that the

function

Scn(t) =
Crc
r+rc

t

is proper service curve in our linear parametric model devel-
oped. And as before, we check this conjucture by writing

(rct)⊗ Scn(t) = inf
0≤τ≤t

{
rcτ +

Crc
r + rc

(t− τ)
}

=

= inf
0≤τ≤t

{
rcτ −

Crc
r + rc

τ +
Crc
r + rc

t

}
=

= inf
0≤τ≤t

{
rcτ

r + rc − C
r + rc

+
Crc
r + rc

t

}
.

Observe now that carrying out the operation of infimum in the
above relation, when r > C − rc, gives

(rct)⊗ Scn(t) = rcC
r+rc

t.

Further, Dc(t) =
rcC
r+rc

t in the non-linear region of operation
(because Dc(t) = Ct − rC

r+rc
t = rcC

r+rc
t). So, finally, we can

write

(rct)⊗ Scn(t) = Dc(t)

and this completes the proof of the conjecture.

VII. CONCLUSION

In this paper, we have extended the results on network
available bandwidth estimation presented in [5], which regards
the so-called pathchirp approach, as well as the results related
to bandwidth estimation in the non-linear range of operation
of the FIFO system. First, we have analyzed in a wider context
the fundamental equations derived for the aforementioned
method, showing a wider range of its applicability than that
indicated in [5]. Second, we have shown that the FIFO system
working in the non-linear region of operation can be viewed
alternatively as a linear parametric network. And finally, we
have developed a linear parametric model for the description
of the cross traffic.

APPENDIX
In [5], the following relations

D(t) = (rt)⊗ Sfifo if r ≤ C − rc (A.1)

D(t) ≥ (rt)⊗ Sfifo if r > C − rc (A.2)

valid for all t ≥ 0 have been used for modelling the output
through traffic with the use of the service curve Sfifo(t). In
this Appendix, we present the derivations showing that the
relations (A.1) and (A.2) correspond to the general relations
(1) with (2) and (1) with (3), respectively. In fact, for r ≤
C − rc, we have

(rt)⊗ Sfifo(t) = inf
0≤τ≤t

{rτ + (C − rc)(t− τ)} =

= inf
0≤τ≤t

{rτ + (C − rc)t− (C − rc)τ)} =

= inf
0≤τ≤t

{τ(r + rc − C) + (C − rc)t)}.

And because r+rc−C ≤ 0 holds in this case, the infimum of
the expression in the parentheses of the above relation occurs
for τ = t. Therefore, we get

(rt)⊗ Sfifo(t) = t(r + rc − C) + (C − rc)t = rt = D(t).

Similarly, for r > C − rc we also have

(rt)⊗ Sfifo(t) = inf
0≤τ≤t

{τ(r + rc − C) + (C − rc)t)}.
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However, because now r+rc−C > 0, the infimum mentioned
above occurs in this case for τ = 0. So, we obtain

(rt)⊗ Sfifo(t) = (C − rc)t = rmaxt ≤ rC
r+rc

t = D(t)

or shortly

D(t) ≥ (rt)⊗ Sfifo(t).
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