
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 4, PP. 317–324
Manuscript received October 28, 2013; revised November, 2013. DOI: 10.2478/eletel-2013-0038

Implementation of Algorithm
of Petri Nets Distributed Synthesis into FPGA

Arkadiusz Bukowiec, Jacek Tkacz, Tomasz Gratkowski, and Tomasz Gidlewicz

Abstract—In the paper an implementation of algorithm of
Petri net array-based synthesis is presented. The method is
based on decomposition of colored interpreted macro Petri net
into subnets. The structured encoding of places in subnets is
done of using minimal numbers of bits. Microoperations, which
are assigned to places, are written into distributed and flexible
memories. It leads to realization of a logic circuit in a two-
level concurrent structure, where the combinational circuit of
the first level is responsible for firing transitions, and the second
level memories are used for generation of microoperations. This
algorithm is implemented in C# and delivered as a stand alone
library.

Keywords—C#, decomposition, FGPA, logic synthesis, Petri Net

I. INTRODUCTION

APPLICATION specific logic controllers (ASLCs) [1]–
[3] are one of the biggest and most popular group

of electronic devices. They can be designed as dedicated
software for microprocessor or as dedicated hardware. The
second approach gives more possibilities of system integration
as system on programmable chip (SoPC) with use of field
programmable gate arrays (FPGAs). The most classical way of
designing such controllers is application of hardware descrip-
tion languages (HDLs) but it is uncomfortable for designer
and potentially it gives high risk of human mistake. The
usage of graphical representation of algorithm is much more
conformable [4]–[7]. In this case Petri nets (PNs) [8], [9]
are one of the most adequate methods for formal design of
ASLCs [10]. It gives easy way for representation of concurrent
processes and additionally there could be applied mathematical
algorithms for formal analysis and verification of the designed
model [11]–[17]. There are also several algorithms of direct
synthesis of Petri net model into FPGA devices [18]–[21]. The
most typical implementation of Petri nets into FPGA devices
use one-hot local state encoding where each single place is
represented by a flip-flop [22]. Such an approach requires
hardware implementation of a large number of several logic
functions and flip-flops included in macrocells.

One of the main features of FPGA is an existence of
separated logic elements (look-up tables) with restricted fixed
number of inputs. Very frequently logic functions have more
arguments than number of inputs of such logic element. It
forces a functional decomposition during a synthesis process
and consumes a large number of logic elements. One of

The research was financed from budget resources intended for science in
2010–2013 as an own research project No. N N516 513939.

A. Bukowiec, J.Tkacz, T. Gratkowski, and T. Gidlewicz are with
the Institute of Computer Engineering and Electronics, University of
Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland (e-mails:
{a.bukowiec;j.tkacz;t.gratkowski}@iie.uz.zgora.pl; tgidlewicz@gmail.com).

the methods of decreasing a number of such functions is
architectural decomposition of a sequential circuit [23], [24].
Such methods introduce several additional internal variables
and very often consume more hardware than typical direct
implementation. This issue can be resolved by using logic
elements together with embedded memory blocks [25] that
are available in modern FPGA devices.

There is proposed the fully automated implementation of
the method of synthesis [26], [27] that allows to decrease the
number of implemented logic functions depending on inputs
and internal variables of Petri net-based ASLC in the paper.
The algorithm was implemented with use of C# language and
compiled as a stand alone library. The entry to the algorithm
is object oriented model of colored Petri net and the output
is a set of HDL files that consist the logic description of
ASLC. The synthesis process is fully automated, it means
that it does not need any interaction with the designer. To
permit the minimal local state encoding the Petri net has to
be initially colored [8], [28]. The Petri net is also compacted
into macro Petri net [29] to shorten time of synthesis [27].
During the synthesis, the logic functions are classified into two
sets. The first set contains functions responsible for describing
preconditions and guards of transitions. This set is going to
be synthesized as logic functions and then it can be imple-
mented with use of logic elements. The second set contains
functions responsible for generation of microoperations and it
is going to be synthesized as memory block and then it can
be implemented with use of the embedded memory blocks.
Macroplaces that are colored by the same color create one state
machine module. Consequently, places, represented by these
macroplaces, could be encoded by a minimal-length binary
vector. This encoding also allows a reasonable decomposition
of a microoperation decoder into several concurrently work-
ing distributed memories. Each memory block controls only
microoperations that belong to the subnet with the same color.
In such a way it leads to balanced usage of all kinds of logic
resources of the FPGA device. Very frequently such a method
gives also an effective utilization of all FPGA resources by
a whole digital system.

II. CONTROL INTERPRETED MACRO-PETRI NET

Definition 1. A simple Petri net [8], [9] is a triple

PN = (P, T, F), (1)

where:
P is a finite, non-empty set of places,

P = {p1, . . . , pM}
T is a finite, non-empty set of transitions,

T = {t1, . . . , tS}

318 A. BUKOWIEC, J. TKACZ, T. GRATKOWSKI, T. GIDLEWICZ

F is a set of flow relations called arcs from places to
transitions and from transitions to places:

F ⊆ (P × T) ∪ (T × P),
P ∩ T = ∅.

Definition 2. Sets of input and output transitions of a place
pm ∈ P are respectively as follows:

•pm = {ts ∈ T : (ts, pm) ∈ F},
pm• = {ts ∈ T : (pm, ts) ∈ F}.

Definition 3. Sets of input and output places of a transition
ts ∈ T are respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

Definition 4. A marking of a Petri net is a function:

M : P → N.

It describes a number of tokens M(pm) situated in a place
pm. When a place or a set of places contains a token it is
marked. A transition ts can be fired if all its input places are
marked. Firing of a a transition removes tokens from its input
places and puts one token in each output place. There can be
specified the initial marking M0, then

Definition 5. the initially marked Petri net is a 4-tupe:

PN = (P, T, F,M0). (2)

A. Colored Petri Net

A Petri net can be enhanced by assigning colors to places
and transitions [8], [28].

Definition 6. A state machine subnet (SM-subnet) [8] of
a Petri net PN is as a strongly connected subnet PNi

generated by places in PN , such that all input and output
transitions of places in PNi and their connecting arcs belong
to PNi and each transition of a subnet PNi has exactly one
input and one output arc.

In colored Petri net colors help to validate intuitively and
formally the consistency of all sequential processes covering
the considered Petri net. Each color recognizes one SM-subnet.

The rules for Petri net coloring are as follows [18]:
• each place and transition must have at least one color,
• if the place has a color each of its input and output

transition must have the same color,
• input places of each transition must hold different colors,
• output places of each transition must hold different colors,
• input and output places of transition must share the same

set of colors,
• initially marked places can not share exactly the same set

of colors,
• the number of different colors which are shared by the

initially marked places is equal to the total number of
colors.

B. Interpreted Petri Net

An interpreted Petri net is a Petri net enhanced with an
additional feature for information exchange [9]. Such a Petri
net is called interpreted Petri net or a colored interpreted Petri
net if both enhancements are applied. This exchange is made
by use of binary signals. Interpreted Petri nets are used as
models of concurrent logic controllers.

The Boolean variables occurring in the interpreted Petri net
can be divided into three sets:
X is a set of input variables, X = {x1, . . . , xL},
Y is a set of output variables, Y = {y1, . . . , yN},
Z is a set of internal communication variables, typically

it is not used and Z = ∅.
The interpreted Petri net has a guard condition ϕs associated
with every transition ts. The condition ϕs is defined as the
Boolean function of some variables form sets X and Z. In the
particular case the condition ϕs can be defined as 1 (always
true). Now, transition ts can be fired if all its input places are
marked and current value of corresponding Boolean function
ϕs is equal to 1. Conjunction ψm is associated with place
pm. ψm is an elementary conjunction of affirmation of some
output variables form the set Y . If the place pm is marked the
output variables from corresponding conjunction ψm are set
and other variables are reset.

C. Macro Petri Net

Macro Petri net is a Petri net where part of the net (subnet) is
replaced by one macroplace [9]. It allows to enhance Petri nets
with hierarchy [12] and it simplifies algorithms of coloring,
verification and synthesis of Petri net. There are many classes
of subnets that could be replaced by macroplace, for e.g.:

• SM-subnets [8],
• Two-pole blocks [30],
• Parallel places [8],
• P-blocks [9].

These classes create to many possibilities of merging Petri
net into macro Petri net. For the synthesis purpose, the best
solution is application of mono-active macroplaces [30]. These
are macroplaces that have one input and one output and consist
of only sequential places. Only macro Petri nets with such
macroplaces will be used in this article.

III. SYNTHESIS METHOD OVERVIEW

The synthesis method [27] is based on the minimal local
states encoding of places together with functional parallel
decomposition of the Petri net-based logic circuit. Places are
encoded separately in every colored subset. Output variables
(names of particular microoperations) assigned to places are
placed in configured memories of FPGA. It leads to realization
of a logic circuit in two-level structure (Fig. 1), where the
combinational circuits (CCi) of first level are responsible for
generation of the excitation functions:

Di = Di(X,Q), (3)

where Q = Q1 ∪Q2 ∪ · · · ∪QI is the set of variables used to
store the codes of currently marked places. The memory of the
circuit is built from I concurrent colored D-type registers RGi

IMPLEMENTATION OF ALGORITHM OF PETRI NETS DISTRIBUTED SYNTHESIS INTO FPGA 319

CCiCC2CC1

RGiRG2RG1

YiY2Y1

D1D1 D2D2 DiDi

Q1Q1 Q2Q2 QiQi

QQ

XX

Q1Q1 Q2Q2 QiQi

YY

Y1Y1 Y2Y2 YiYi

Fig. 1. Logic circuit of Petri net.

which hold a current state of each subnet. Here, i = 1, 2, . . . , I
is a number of color and SM-subnet in Petri net colored
by I colors. The second level decoders Yi are responsible
for generation of microoperations and they are implemented
using memory blocks. Their functionality can be described by
function:

Y i = Y i(Qi). (4)

Such approach allows to use logic elements and embedded
memory blocks available in modern FPGA devices in a bal-
anced way.

The entry point to the synthesis method is the colored
interpreted macro Petri net. There are many algorithms of SM-
coloring Petri nets, for example, the one described in: [31],
[32]. The outline of synthesis process [27] includes following
steps:

1) Formation of subnets
2) Encoding of places
3) Formation of conjunctions
4) Formation of logic equations
5) Formation of memory contents
6) Formation of logic circuit

IV. IMPLEMENTATION OF SYNTHESIS METHOD

The algorithm [27] was implemented in C# in Microsoft
.NET environment. It was compiled into DecomponeAnd-
VHDLCodeGen.dll library. The whole process is fully auto-
mated and does not require any interaction with user. There is
one public method for generation VHDL code. Other methods,
which perform particular steps of synthesis algorithm, are
internal and not available for end-user. They are invoked
automatically by main method.

The whole algorithm was implemented with use of three
classes (Fig. 2). The main class is GenerateHDL. The entry
point is object of colored Petri net passed to the constructor
of GenerateHDL class. The whole synthesis process is run
by public method VHDLCODEGenerate(). This process is
divided into two parts: decomposition of petri net (step 1.)
– implemented in the Decompone class, and generation of
VHDL description (step 6.) – implemented in the GenHDL-
CODE class. The second part includes encoding (step 2.) and
formation of conjunctions (step 3.), logic equations (step 4.),
and memory contents steps (step 5.).

+GenerateHDL()

+GetCCList()

+GetRGList()

+GetYList()

+GetFinalFile()

+GetSubnets()

+VHDLCODEGenerate()

-gen

-dec

-petriNet

-subnets

GenerateHDL

+GenHDLCODE()

+GenerateCode()

+GetCCList()

+GetRGList()

+GetYList()

+GetFinalFile()

-generetePlaceCode()

-genereteTranistionCode()

-genereitHoldingPlaceCode()

-GenereitDForAllSubnets()

-GenereitVHDLCCCodForAllSubnet()

-GenereitVHDLRGCodForAllSubnet()

-GenereitVHDLYCodForAllSubnet()

-GenereitFinalVHDLFile()

-petriNet

-subnets

-globalPlaceCode

-globalHoldingPlaceCode

-globalTranistionCode

-DList

-CCList

-RGList

-YList

GenHDLCODE

+Decompone()

+Decomponing()

-petriNet

-subnets

Decompone

gen

dec

+PlaceCode()

+place

+code

+codeString

PlaceCode

+TransitionCode()

+transition

+codeString

TransitionCode

Fig. 2. Class diagram of DecomponeAndVHDLCodeGen library.

To make the description more clear it is illustrated by
application for Petri net PN1 (Fig. 3a). Of course, initially the
Petri net PN1 was colored and collapsed into colored macro-
Petri net (Fig. 3b).

A. Object-Oriented Model of Petri Net
To store the model of Petri net in the computer memory

there was designed the object-oriented model (Fig. 4). This
model allows to store hierarchical and colored nets. The main
class PetriNet is responsible for storing the whole model and
it correspond to Petri net definition (2). The classes Place
and Transition represent single place and transition of Petri
net and their collections places and transitions in the main
class represent all places and transitions of Petri net and these
collections correspond to the sets P and T from (2). The
class Arc describes flow relation between place and transition
or transition and place. Its collection arcs in the main class
describes all relations in Petri net and it corresponds to the
set F from (2). There is no special collection to define initial
marking M0 of the Petri net but it can be defined by setting
an adequate value of the property token of initially marked
places. The class Color is responsible to store colors of
Petri net. The classes Place, Transition, Arc have a collection
colors to store all colors assigned to this object. The classical
interpretation of Petri net ia defined in the classes Place and
Transition. The property outputs in the class Place defines
coma separated list of active outputs and it corresponds to
the conjunction ψm. The property condition in the class
Transition defines the logic formula of guard condition and
it corresponds to the Boolean function ϕs. Proposed model
has an extension of classical interpretation of Petri net by
additional adding of the condition to the flow relation. It is
defined by the property condition in the class Arc. If it is used
in Petri net model then the full guard condition (the property
fullCondition) of transition is formed as a conjunction of
condition of transition and all conditions of its input arcs. The
property isMacroplace is defined when considered place is a
macroplace. Then the collection placesInMacroPlace consists
the list of all places belonging to this macroplace. Additionally,
each place belonged to the macroplace has set the property
parentMacroplace to this macroplace. Such definition of the

320 A. BUKOWIEC, J. TKACZ, T. GRATKOWSKI, T. GIDLEWICZ

P1

P2 P3

P4 P5P6

P7

P8

P9

Y1

T1 X1

Y2 Y3

Y6 Y4 Y5

Y7

Y8

Y9

T2

T3

T4

T5

T6

T7

X2

X3X4

(a) Interpreted Petri net PN1

P3

P4

P8

T1 X1

Y3

Y4

Y8

T3

T5

T6

P1MP2

P1MP1

P1MP3

[C1,C2,C3]

[C1,C2,C3]

[C2,C3]

[C3][C2]

[C1,C2,C3]

[C2,C3]

[C1]

[C2,C3]

[C2,C3]

(b) Colored Macro-Petri net PN1

Fig. 3. Example of Petri net PN1.

hierarchy in the proposed object-oriented model of Petri net
allows to construct multi-level hierarchy in Petri net model.

There are also defined some additional redundant properties
(like incidece or inputPlaces) in this model that are used to
speed-up some analytical algorithms that operate on this model
(like coloring, decomposition, etc.). There are also defined
other properties (like xCord or labelPosition) that are used
to store information required for graphical representation of
the Petri net.

B. Decomposition of Petri Net
The main synthesis process starts from decomposition of

Petri net into subnets. It is done by the Decomponing() method

+connectObjectFromArc()

+loadSubnet()

+PetriNet()

+ToString()

+colorVariables

+inputVariables

+outputVariables

+places : Place

+allPlaces

-transitions

-arcs

PetriNet

+Color()

+ToString()

-colorID

+colID

+loopID

Color

+Place()

+ToString()

-PlaceID

+name

+outputLists

+subNet

+comment

+incidece

+incideceIn

+incideceOut

+colors

+outputs

+inputTransitions

+outputTransitions

+isMacroplace

+token

+...

+x

+y

Place

+ToString()

+Transition()

-transitionID

+name

+condition

+fullCondition

+incidenceIn

+incidenceOut

+inputPlaces

+outputPlaces

+...

+x

+y

Transition

+Arc()

-ArcID

+name

+colors

+condition

+sourceID

+targetID

+...

+xCord

+yCord

Arc

inputPlaces

outputPlaces

inputTransitions

outputTransitions

c
o

lo
rs

colors

colors

Fig. 4. Class diagram of Petri net model.

from the the Decompone class invoked on dec property.
The Petri net has to be passed into constructor Decom-
pone(PetriNet net) of this property. Each subnet corresponds
to one color of Petri net. It has to include all transitions that
are colored by this color (Lst. 1).

1 foreach (T r a n s i t i o n t in p e t r i N e t .
t r a n s i t i o n s)

2 {
3 copy = f a l s e ;
4 foreach (Co lo r c in t . c o l o r s)
5 i f (c . c o l o r I D == i)
6 copy = t rue ;
7 i f (copy)
8 s u b n e t . t r a n s i t i o n s . Add (t) ;
9 }
Lst. 1. Part of C# code to copy subnet transitions

It also has to include all places colored only by this color. If
any place is colored by this and others colors it is assigned
only to one subnet. In other subnets it is replaced by empty
doubler macroplace (with prefix DMP) (Lst. 2). If there is a
chain of such empty doubler macroplaces it could be replaced
by one empty doubler macroplace in the further optimization
of this algorithm. At this stage the macroplaces are treated the
same as normal place.

1 foreach (P l a c e p in p e t r i N e t . p l a c e s)
2 {
3 pColor = c o l o r s N o ;
4 a d d P l a c e = f a l s e ;
5 i f (! p . r e p l a c e d B y M a c r o p l a c e)
6 {
7 foreach (Co lo r d in p . c o l o r s)
8 {
9 i f (pColor > d . c o l o r I D) pColo r = d

. c o l o r I D ;
10 i f (d . c o l o r I D == i) a d d P l a c e =

t rue ;
11 }
12 i f (pColor == i && a d d P l a c e)
13 {
14 P l a c e n = p ;

IMPLEMENTATION OF ALGORITHM OF PETRI NETS DISTRIBUTED SYNTHESIS INTO FPGA 321

15 tempNet . p l a c e s . Add (n) ;
16 }
17 e l s e i f (pColor < i && a d d P l a c e)
18 {
19 macro p l ace ++;
20 P l a c e dmp = new P l a c e (”DMP” +

mac ro p l ace . T o S t r i n g ()) ;
21 dmp . c o l o r s = p . c o l o r s ;
22 dmp . i s M a c r o p l a c e = t rue ;
23 dmp . i n p u t T r a n s i t i o n s = p .

i n p u t T r a n s i t i o n s ;
24 dmp . o u t p u t T r a n s i t i o n s = p .

o u t p u t T r a n s i t i o n s ;
25 dmp . p l a c e s I n M a c r o P l a c e . Add (p) ;
26 tempNet . p l a c e s . Add (dmp) ;
27 }
28 }
29 }

Lst. 2. Part of C# code to copy subnet places

The example of extracted subnets for the Petri net PN1 are
shown in the Fig. 5a. The next step of decomposition is
to expand macroplaces to receive flat subnets. Now, each
macroplace can occur only in one subnet, because other
occurrences were replaced by empty doubler macroplaces. It
means, that each macroplace has to be expanded (Lst. 3).

1 foreach (P l a c e mp in tempNet . p l a c e s)
2 {
3 i f (mp . i s M a c r o p l a c e)
4 {
5 foreach (P l a c e p in mp .

p l a c e s I n M a c r o P l a c e)
6 i f (p . r e p l a c e d B y M a c r o p l a c e)

tempSubnet . p l a c e s . Add (p) ;
7 }
8 }
9 bool r e s u l t = f a l s e ;

10 foreach (P l a c e p in t empSubnet . p l a c e s)
11 {
12 r e s u l t = f a l s e ;
13 i f (p . i n p u t T r a n s i t i o n s [0] . c o l o r s . Count ()

< 2)
14 {
15 foreach (T r a n s i t i o n t in tempNet .

t r a n s i t i o n s)
16 {
17 i f (! t . E qu a l s (p . i n p u t T r a n s i t i o n s

[0])) r e s u l t = f a l s e ;
18 e l s e
19 {
20 r e s u l t = t rue ;
21 break ;
22 }
23 }
24 i f (! r e s u l t) tempSubnet . t r a n s i t i o n s .

Add (p . i n p u t T r a n s i t i o n s [0]) ;
25 }
26 }
27 foreach (P l a c e p in t empSubnet . p l a c e s)
28 tempNet . p l a c e s . Add (p) ;
29 foreach (T r a n s i t i o n t in t empSubnet .

t r a n s i t i o n s)
30 tempNet . t r a n s i t i o n s . Add (t) ;

Lst. 3. Part of C# code to expand macroplaces

The example of subnets with expanded macroplaces for the
Petri net PN1 are shown in the Fig. 5b.

T1

Y4

T6

P1MP1

[C3][C2][C1]

P1DMP1

P3 Y3

P4

P8 Y8

P1DMP2

P1DMP3

P1DMP4

P1MP3

P1MP2

T1

T3

T5

T6

T1

T3

T5

T6

X1 X1 X1

(a) Subnets with macroplaces

T1

T6

[C1]

P2

P6

T2

T6

[C2]

P1DMP1

P3

P4

P8

T1

T3

T5

P1 Y1

P9 Y9

T7

Y2

Y6

X1X1

X2X4

[C3]

P1DMP2

P1DMP3

P1DMP4

T6

T1

T3

T5

X1

P5

P7

Y5

Y7

T4 X3

Y4

Y3

Y8

(b) Subnets with expanded macroplaces

Fig. 5. Extracted subnets of Petri net PN1.

C. Formation of Description of Petri Net

The other steps of synthesis algorithm are performed
by methods from the GenHDLCODE class. All equations
are generated directly into VHDL syntax. It allows easy
and fast further generation of description of hole circuit
in VHDL. To start these steps the GenerateCode()
method on the gen property have to be invoked.
The petri net and subnets are passed into constructor
GenHDLCODE(PetriNet net, List〈PetriNet〉 subnets) of this
property. The GenerateCode() method runs in sequence
all steps: generetePlaceCode(), genereteTranistionCode(),
genereitHoldingPlaceCode(), GenereitDForAllSubnets(),
GenereitVHDLCCCodForAllSubnet(), GenereitVHDL-
RGCodForAllSubnet(), GenereitVHDLYCodForAllSubnet(),
GenereitFinalVHDLFile().

First all places are encoded by the generetePlaceCode()
method (Lst. 4).

322 A. BUKOWIEC, J. TKACZ, T. GRATKOWSKI, T. GIDLEWICZ

1 i n t s t a r t R = 0 ;
2 i n t s u b n e t I D = 0 ;
3 foreach (P e t r i N e t p in s u b n e t s)
4 {
5 P l a c e s t a r t P l a c e = F i n d S t a r t P l a c e (p) ;
6

7 i n t i t e m I n d e x = 0 ;
8 L i s t<byte> code = I n t 2 V e c t o r (i t e m I n d e x) ;
9 s t r i n g c o d e S t r i n g = g e n S t r i n g C o d e P l a c e (

s t a r t R , code , s t a r t R +Ri [s u b n e t I D]) ;
10 g l o b a l P l a c e C o d e . Add (new PlaceCode (

s t a r t p l a c e , code , c o d e S t r i n g)) ;
11 L i s t<Place> n e x t P l a c e s = N e x t P l a c e (

s t a r t p l a c e , p) ;
12 i t e m I n d e x ++;
13 P l a c e l a s t P l a c e = s t a r t P l a c e ;
14 whi le ((s t a r t P l a c e . p l a c e I D != n e x t P l a c e s

[0] . p l a c e I D))
15 {
16 i f (n e x t P l a c e s . Count == 1)
17 {
18 code = I n t 2 V e c t o r (i t e m I n d e x) ;
19 c o d e S t r i n g = g e n S t r i n g C o d e P l a c e (

s t a r t R , code , s t a r t R + Ri [
s u b n e t I D]) ;

20 g l o b a l P l a c e C o d e . Add (new PlaceCode (
n e x t P l a c e s [0] , code , c o d e S t r i n g
)) ;

21 l a s t P l a c e = n e x t P l a c e s [0] ;
22 n e x t P l a c e s = N e x t P l a c e (n e x t P l a c e s

[0] , p) ;
23 i f (n e x t P l a c e s . Count () < 1) break ;
24 i t e m I n d e x ++;
25 }
26 e l s e
27 {
28 L i s t<Place> t ;
29 foreach (P l a c e p r in n e x t P l a c e s)
30 {
31 t = LoopCounter (p , pr ,

l a s t P l a c e , s t a r t P l a c e) ;
32 i f (t . Count > 0)
33 {
34 foreach (P l a c e pp in t)
35 {
36 code = I n t 2 V e c t o r (

i t e m I n d e x) ;
37 c o d e S t r i n g =

g e n S t r i n g C o d e P l a c e (
s t a r t R , code , s t a r t R
+ Ri [s u b n e t I D]) ;

38 g l o b a l P l a c e C o d e . Add (new
PlaceCode (n e x t P l a c e s
[0] , code , c o d e S t r i n g
)) ;

39 i t e m I n d e x ++;
40 }
41 }
42 e l s e
43 {
44 n e x t P l a c e s = new L i s t<

Place >() ;
45 n e x t P l a c e s . Add (p r) ;
46 }
47 }
48 }
49 }
50 s t a r t R += Ri [s u b n e t I D] ;
51 s u b n e t I D ++;
52 }
Lst. 4. Part of C# code to encode places

Each subnet is encoded separately. The encoding is done on
minimal number of required bits. The initial place of each
subnet receives the code with value equal to 0 (lines 5 to 11
of Lst. 4) and reaming places receive following codes. It is
required to use

Ri = dlog2 |Pi|e (5)

bits to encode places of each subnet, where Pi ⊆ P ∪MPi is
a set of places in a subnet that was created based on the i-th
color. MPi is the set of doubles added to this subnet. The code
of place is stored as an object of PlaceCode class. It is stored
both as list of bits and string representation in VHDL syntax
of conjunction of affirmation or negation of logic variables.
This string also represent a place conjunction that is required
to form logic equations. For example, for the p1 place it is
denoted as:

not Q(0) and not Q(1) ;

Then, the guard condition of transitions are generated by
the genereteTranistionCode() method (Lst. 5).

1 s t r i n g gua rd ;
2 foreach (T r a n s i t i o n t in p e t r i N e t .

t r a n s i t i o n s)
3 {
4 foreach (P l a c e p in t . i n p u t P l a c e s)
5 {
6 foreach (P e t r i N e t s u b n e t in s u b n e t s)
7 {
8 L i s t<Place> DmpList = GetDMPList (

s u b n e t) ;
9 i f (PlaceIsInDMP (p , DmpList) &&

t r a n i s i t i o n I n S u b n e t (t , s u b n e t))
10 gua rd += ToVhdlCode (

FindDmpWithPlace (p l a c e ,
DmpList) . p l a c e I D) ;

11 }
12 foreach (P e t r i N e t s u b n e t in s u b n e t s)
13 {
14 L i s t<Place> DmpList = GetDMPList (

s u b n e t) ;
15 i f (P l a c e I n S u b n e t (p , s u b n e t) && !

PlaceIsInDMP (p , DmpList))
16 guard += ToVhdlCode (p l a c e .

p l a c e I D) ;
17 }
18 }
19 guard += AddVhdlCondi t ionCode (t) ;
20 guard += ” ; ” ;
21 g l o b a l T r a n i s t i o n C o d e . Add (new

T r a n s i t i o n C o d e (t , gua rd)) ;
22 }
Lst. 5. Part of C# code to generate guard condition

Each guard of the transition is created as a conjunction.
This conjunction itself consists of conjunctions of codes of
transition input places and of a transition condition:

ts =
∧
•ts ∧ ϕs. (6)

It is stored as string representation formatted with VHDL
syntax. For example, for the t1 transition it is denoted as:

p (1) and DMP(1) and DMP(2) and X1 ;

Next, place hold-conjunctions are created by the generei-
tHoldingPlaceCode() method (Lst. 6).

IMPLEMENTATION OF ALGORITHM OF PETRI NETS DISTRIBUTED SYNTHESIS INTO FPGA 323

1 foreach (P laceCode pc in g l o b a l P l a c e C o d e)
2 {
3 foreach (byte b in pc . code)
4 {
5 i f (b > 0)
6 {
7 foreach (T r a n s i t i o n t in pc . p l a c e .

o u t p u t T r a n s i t i o n s)
8 hpc += ” (n o t ” + ToVhdlCode (t .

t r a n s i t i o n I D) + ”) and ” ;
9 hpc += ” ” + ToVhdlCode (p l . p l a c e .

p l a c e I D) + ” ; ” ;
10 g l o b a l H o l d i n g P l a c e C o d e . Add (new

PlaceCode (new P l a c e (”H”+ p l . p l a c e
. p l a c e I D) , new L i s t<byte >() , hpc)
) ;

11 }
12 }
13 }
Lst. 6. Part of C# code to generate place hold-conjunctions

This conjunction itself consists of conjunction of negation of
all conjunctions of output transitions and of a place conjunc-
tion:

hpm =
∧
pm• ∧ pm. (7)

It is also stored as string representation formatted with VHDL
syntax. For example, for the p1 place it is denoted as:

(not t (1)) and p (1) ;

Now, the equations can be generated. The GenereitDForAll-
Subnets() method (Lst. 7) generates input equations for D flip-
flops.

1 foreach (P e t r i N e t p in s u b n e t s)
2 {
3 bool f i r s t = t rue ;
4 s t r i n g r e s u l t = S t r i n g . Empty ;
5 f o r (i n t i = 0 ; i < Ri [p i] ; i ++)
6 {
7 f i r s t = t rue ;
8 r e s u l t += ”D(” + i + ”) <=” ;
9 foreach (P laceCode pc in

g l o b a l P l a c e C o d e)
10 {
11 i f (P l a c e I n S u b n e t (pc . p l a c e , s u b n e t

) | | DMPPlaceInSubnet (pc . p l a c e ,
s u b n e t))

12 {
13 i f (pc . code . Count () > i)
14 {
15 i f (pc . code [i] > 0)
16 {
17 i f (! f i r s t) r e s u l t += ”

or ” ;
18 foreach (T r a n s i t i o n t in

pc . p l a c e .
i n p u t T r a n s i t i o n s)

19 r e s u l t += ToVhdlCode (t
. t r a n s i t i o n I D) + ”
or ” ;

20 r e s u l t += ToVhdlCode (”H”
+ pc . p l a c e . p l a c e I D) ;

21 f i r s t = f a l s e ;
22 }
23 }
24

25 }
26 }
27 r e s u l t += ” ;\ r \n ” ;

28 }
29 DLis t . Add (r e s u l t) ;
30 p i ++;
31 }
Lst. 7. Part of C# code to generate D equations

They are built from conjunctions describing guard condition
of transitions and place hold-conjunctions. If the variable qr
in the place code is set to 1 then the sum of corresponding
variable Dr consists of transition conjunctions of all its input
transitions and the place p hold-conjunctions:

Dr =

M∨
m=1

(
∨
•pm ∨ hpm ∧ Code(pm)[r]). (8)

All equations are formatted with VHDL syntax. For example,
for the D0 equation it is denoted as:

D(0) <=t (1) or Hp (2) or t (6) or Hp (9) ;

Now all conjunctions and equations are generated and
VHDL files can be build up from these expressions. The
GenereitVHDLCCCodForAllSubnet() method generate files
describing combinational circuits and it creates one VHDL
file for each subnet. This file consists of equations for place
encoding, transition conditions, place hold conditions and D
flip-flops. The GenereitVHDLRGCodForAllSubnet() method
create a one register for each subnet. The registers only differs
in the length of vector and they are generated based on syn-
thesis template [33]. The GenereitVHDLYCodForAllSubnet()
generate all decoders in VHDL. There is created one decoder
for each subnet. This method creates list of all outputs for each
subnet and then generate truth table for them and store it di-
rectly in VHDL syntax. Finally, the GenereitFinalVHDLFile()
method creates the top-level module. Such created model
of logic circuit can be passed into third-party synthesis and
implementation tools.

V. SUMMARY

The implementation of the method of synthesis of appli-
cation specific logic controllers into FPGAs with embedded
memory blocks was presented in this article. It is compiled
into the stand alone library that can be used in other systems.
The colored Petri net as graphical representation of algorithm
[4], [34]–[36] is used as entry point to the synthesis method.
The special method of logic synthesis [27] is applied. The
usage of designed library is fully automated and it makes that
it could be easily integrated with design tools in CAD system.
As the output there is a set of VHDL files which describes
logic circuit.

The method was illustrated by a simple example, which
shows the results of execution of designed library.

REFERENCES

[1] N. Chang, W. H. Kwon, and J. Park, “Hardware implementation
of real-time Petri-net-based controllers,” Control Engineering
Practice, vol. 6, no. 7, pp. 889–895, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0967066198000768

[2] N. Marranghello, J. Mirkowski, and K. Bilinski, “Synthesis of
synchronous digital systems specified by Petri nets,” in Hardware
Design and Petri Nets, A. Yakovlev, L. Gomes, and L. Lavagno,
Eds. Boston: Kluwer Academic Publishers, 2000, pp. 129–150.
[Online]. Available: http://link.springer.com/chapter/10.1007%2F978-1-
4757-3143-9 7

324 A. BUKOWIEC, J. TKACZ, T. GRATKOWSKI, T. GIDLEWICZ

[3] B. W. Bomar, “Implementation of microprogrammed control
in FPGAs,” IEEE Transactions on Industrial Electronics,
vol. 49, no. 2, pp. 415–422, 2002. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=993275

[4] D. Drusinsky and D. Harel, “Using statecharts for hardware
description and synthesis,” IEEE Transactions on Computer-Aided
Design, vol. 8, no. 7, pp. 798–807, 1989. [Online]. Available:
ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=31537

[5] L. Gomes and A. Costa, “From use cases to system implementation:
Statechart based co-design,” in Proceedings of 1st ACM & IEEE
Conference on Formal Methods and Programming Models for
Codesign MEMOCODE’03. Mont Saint-Michel, France: IEEE
Computer Society Press, 2003, pp. 24–33. [Online]. Available:
ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=1210083

[6] G. Łabiak, “From UML statecharts to FPGA - the HiCoS approach,”
in Proceedings of the Forum on Specification & Design Languages
FDL’03. Frankfurt, Germany: ECSI, 2003, pp. 354–363.

[7] M. Doligalski, “Behavioral specification diversification for logic
controllers implemented in FPGA devices,” in Proceedings
of the Annual FPGA Conference, ser. FPGAworld’12. New
York, USA: ACM, 2012, pp. 6:1–6:5. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2451636.2451642

[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=24143

[9] A. Karatkevich, Dynamic Analysis of Petri Net-Based Discrete
Systems, ser. Lecture Notes in Control and Information Sciences.
Berlin: Springer-Verlag, 2007, vol. 356. [Online]. Available:
http://link.springer.com/book/10.1007%2F978-3-540-71560-3

[10] T. Kozłowski, E. Dagless, J. Saul, M. Adamski, and
J. Szajna, “Parallel controller synthesis using Petri nets,” IEE
Proceedings – Computers and Digital Techniques, vol. 142,
no. 4, pp. 263–271, 1995. [Online]. Available: http://digital-
library.theiet.org/content/journals/10.1049/ip-cdt 19951886

[11] M. Minoux and K. Barkaoui, “Deadlocks and traps in Petri
nets as Horn-satisfiability solutions and some related polynomially
solvable problems,” Discrete Applied Mathematics, vol. 29,
no. 2-3, pp. 195–210, December 1990. [Online]. Available:
http://dl.acm.org/citation.cfm?id=108745.108751

[12] J. Esparza and M. Silva, “On the analysis and synthesis of free
choice systems,” in Advances in Petri Nets 1990, ser. Lecture
Notes in Computer Science, G. Rozenberg, Ed. Berlin/Heidelberg:
Springer-Verlag, 1991, vol. 483, pp. 243–286. [Online]. Available:
http://link.springer.com/chapter/10.1007%2F3-540-53863-1 28

[13] K. Barkaoui and J.-F. Pradat-Peyre, “On liveness and controlled
siphons in Petri nets,” in Application and Theory of Petri Nets, ser.
Lecture Notes in Computer Science, J. Billington and W. Reisig,
Eds. Berlin/Heidelberg: Springer, 1996, vol. 1091, pp. 57–72.
[Online]. Available: http://link.springer.com/chapter/10.1007%2F3-540-
61363-3 4

[14] L. A. Cortés, P. Eles, and Z. Peng, “Modeling and formal verification
of embedded systems based on a Petri net representation,” Journal of
Systems Architecture, vol. 49, no. 12–15, pp. 571–598, 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=967630

[15] C. Girault and R. Valk, Petri Nets for System Engineer-
ing: A Guide to Modeling, Verification, and Applications.
Berlin/Heidelberg: Springer-Verlag, 2003. [Online]. Available:
http://www.springer.com/computer/swe/book/978-3-540-41217-5

[16] A. Karatkevich and T. Gratkowski, “Analysis of the operational
Petri nets by a distributed system,” in Proceedings of the
International Conference on Modern Problems of Radio Engineering,
Telecommunications and Computer Science TCSET’04, Lviv Polytechnic
National University. Lviv, Ukraine: Lviv, Publishing House
of Lviv Polytechnic, 2004, pp. 319–322. [Online]. Available:
ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=1365973

[17] A. Wȩgrzyn, “Parallel algorithm for computation of deadlocks
and traps in Petri nets,” in 10th IEEE International
Conference Emering Technologies and Factory Automation ETFA’05,
vol. 1, Universita di Catania. Catania, Italy: Piscataway,
IEEE Operation Center, 2005, pp. 143–148. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1612513

[18] K. Biliński, M. Adamski, J. Saul, and E. Dagless, “Petri-net-based algo-
rithms for parallel-controller synthesis,” IEE Proceedings – Computers
and Digital Techniques, vol. 141, no. 6, pp. 405–412, 1994. [Online].
Available: ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=331627

[19] E. Soto and M. Pereira, “Implementing a Petri net specification
in a FPGA using VHDL,” in Design of Embedded Control
Systems, M. Adamski, A. Karatkevich, and M. Wȩgrzyn, Eds.
New York: Springer, 2005, pp. 167–174. [Online]. Available:
http://link.springer.com/chapter/10.1007%2F0-387-28327-7 14

[20] L. Gomes, A. Costa, J. Barros, and P. Lima, “From Petri
net models to VHDL implementation of digital controllers,” in
33rd Annual Conference of the IEEE Industrial Electronics Society
IECON’07. Taipei, Taiwan: IEEE, 2007, pp. 94–99. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4460403

[21] M. Wȩgrzyn and A. Wȩgrzyn, “Penlogic – system for concurrent logic
controllers design,” in Design of Digital Systems and Devices, ser.
Lecture Notes in Electrical Engineering, M. Adamski, A. Barkalov, and
M. Wȩgrzyn, Eds. Berlin: Springer-Verlag, 2011, vol. 79, pp. 215–228.
[Online]. Available: http://link.springer.com/chapter/10.1007%2F978-3-
642-17545-9 9

[22] M. Adamski and M. Wȩgrzyn, “Petri nets mapping into reconfig-
urable logic controllers,” Electronics and Telecommunications Quarterly,
vol. 55, no. 2, pp. 157–182, 2009.

[23] T. Łuba, M. Rawski, and Z. Jachna, “Functional decomposition as a
universal method of logic synthesis for digital circuits,” in Proceedings
of the 9th International Conference Mixed Design of Integrated Circuits
and Systems MixDes’02, Wrocław, Poland, 2002, pp. 285–290.

[24] A. Bukowiec and A. Barkalov, “Structural decomposition of finite
state machines,” Electronics and Telecommunications Quarterly, vol. 55,
no. 2, pp. 243–267, 2009.

[25] A. Bukowiec, Synthesis of Finite State Machines for FPGA devices
based on Architectural Decomposition, ser. Lecture Notes in Control and
Computer Science. Zielona Góra: University of Zielona Góra Press,
2009, vol. 13.

[26] A. Bukowiec and M. Adamski, “Synthesis of Petri nets
into FPGA with operation flexible memories,” in Proceedings
of the IEEE 15th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems DDECS’12,
Tallinn, Estonia, 2012, pp. 16–21. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6219016

[27] ——, “Synthesis of macro Petri nets into FPGA with
distributed memories,” International Journal of Electronics and
Telecommunications, vol. 58, no. 4, pp. 403–410, 2012. [On-
line]. Available: http://www.degruyter.com/view/j/eletel.2012.58.issue-
4/v10177-012-0055-x/v10177-012-0055-x.xml

[28] K. Jensen, K. Kristensen, and L. Wells, “Coloured Petri nets and
CPN tools for modelling and validation of concurrent systems,”
International Journal on Software Tools for Technology Transfer
(STTT), vol. 9, no. 3, pp. 213–254, 2007. [Online]. Available:
http://link.springer.com/article/10.1007%2Fs10009-007-0038-x

[29] M. Adamski and J. Tkacz, “Formal reasoning in logic design
of reconfigurable controllers,” in 11th IFAC/IEEE International
Conference on Programmable Devices and Embedded Systems
PDeS 2012, Z. Bradáč, F. Bradáč, and F. Zezulka, Eds., Brno,
Czech Republic, 2012, pp. 1–6. [Online]. Available: http://www.ifac-
papersonline.net/Detailed/57207.html

[30] A. Karatkevich, “On macroplaces in Petri nets,” in Proceedings
of IEEE East-West Design & Test Symposium EWDTS’08.
Lviv, Ukraine: IEEE, 2008, pp. 418–422. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5580151

[31] A. Wȩgrzyn, “On decomposition of Petri net by means of coloring,” in
Proceedings of IEEE East-West Design & Test Workshop EWDTW’06,
Sochi, Russia, 2006, pp. 407–413.

[32] J. Tkacz, “State machine type colouring of Petri net by means of
using a symbolic deduction method,” Measurement Automation and
Monitoring, vol. 53, no. 5, pp. 120–122, 2007. [Online]. Available:
http://www.pak.info.pl/index.php?menu=artykulSzczegol&idArtykul=401

[33] S. Brown and Z. Vernesic, Fundamentals of Digital Logic with VHDL
Design, 2nd ed. New York: McGraw-Hill, 2005. [Online]. Available:
http://highered.mcgraw-hill.com/sites/0073380334/

[34] G. Borowik, M. Rawski, G. Łabiak, A. Bukowiec, and
H. Selvaraj, “Efficient logic controller design,” in Fifth International
Conference on Broadband and Biomedical Communications
IB2Com’10, Malaga, Spain, 2010, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5723633

[35] G. Łabiak, M. Adamski, M. Doligalski, J. Tkacz, and
A. Bukowiec, “UML modelling in rigorous design methodology
for discrete controllers,” International Journal of Electronics and
Telecommunications, vol. 58, no. 1, pp. 27–34, 2012. [On-
line]. Available: http://www.degruyter.com/view/j/eletel.2012.58.issue-
1/v10177-012-0004-8/v10177-012-0004-8.xml

[36] M. Doligalski, “Behavioral specification of the logic controllers
by means of the hierarchical configurable Petri nets,” in 11th
IFAC/IEEE International Conference on Programmable Devices and
Embedded Systems PDeS 2012, Z. Bradáč, F. Bradáč, and F. Zezulka,
Eds., Brno, Czech Republic, 2012, pp. 87–90. [Online]. Available:
http://www.ifac-papersonline.net/Detailed/57239.html

