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Track-Before-Detect Filter Banks

for Noise Object Tracking
Przemysław Mazurek

Abstract—The Track-Before-Detect (TBD) filter banks is pro-
posed for the processing of noise object that are additive to
the background noise. Spatio-Temporal TBD algorithm uses the
preprocessing of measurement. The modified moving standard
deviation filter is applied. The correction of the results for
the selection of the highest possible filter banks window is
proposed. Position and velocity errors are evaluated numerically
for two smoothing coefficients. Monte Carlo test shows that all
filter banks allow the tracking if the standard deviation of the
background is below 1.3.
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I. INTRODUCTION

THE tracking algorithms are very important in numerous

applications. The air, space, water surface, underwater

surveillance applications are important for example [1], [2],

[3]. The tracking systems are very sophisticated. The main

parts of systems are related to the detection, tracking and

assignment. Most systems are related to the multiple objects

tracking, so all parts of the signal processing parts need careful

design and implementation. Typical tracking systems are based

on the mentioned detection and tracking scheme [4], [5], [1]

(Fig. 1).
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Fig. 1. Conventional tracking scheme.

The detection is based on the threshold algorithm (fixed or

adaptive threshold level). The detected positions are processed

by the tracking filters that are used for the signal-to-noise

ratio (SNR) improvement. The noise measurement gives quite

low SNR values so multiple false detections and missed

detection occur. Tracking filters use the knowledge about

the motion model so reduction of the influence of the noise

could be obtained. The assignment algorithm is applied to the

tracks maintenance. The observation should be assigned to the

appropriate track, new tracks should be created if a new object

is in the range and the removal of the tracks for objects that

are outside of the range is necessary.

Conventional approach fails if the noise level is high and

the signal values related to the object are low (Fig. 2). The
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object is hidden inside the noise floor and the tracking is not

possible.

Fig. 2. Example of 1D measurements: Simple to detect object; Measurements
disturbed by the Gaussian background noise; Object hidden in the Gaussian
background noise.

Alternative approach, based on the opposite scheme is

necessary. The track-before-detect (TBD) approach (Fig. 3)

allows the tracking of such objects, even if SNR << 1
[1], [6], [7]. The number of computation is huge, because all

hypothetical trajectories should be verified, even if there is no

object in the range [8], [9]. The cost of conventional approach

is linear function of the number of observed object, quite often.

Accumulative approach applied in TBD algorithm allows the

filtering of the signal related to the every trajectory [6].
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Fig. 3. Track-Before-Detect scheme.

TBD systems could be applied for all kinds of signals

that are used in surveillance applications. Radar and infrared

signals could be processed using directly or after additional

preprocessing. Data fusion, from the same type sensor is

possible. Multiple sensors are important for the estimation

of the proper state of the object. Radar measurements are

sensitive to distance especially, but the angular resolution

is low. Infrared measurements give the superior resolution

of bearing but the distance measurements are not possible

using single sensor. Application of multiple sensors located at

different position allows solving problems of the single sensor.

Alternative option is based on the data fusion from two

different sensor types located at the same or different locations.

Combined measurements using radar and infrared sensors

allow estimation of the object state using data fusion [7].

II. SPATIO-TEMPORAL TRACK-BEFORE-DETECT

ALGORITHM

The Spatio-Temporal TBD algorithm is recursive algorithm

for multidimensional signal processing [10], [11], [9], [12].

The formula (1a) is the initialization of the state space.

The formula (1b) is the motion update responsible for the

prediction and noise suppression. The formula (1c) is the

information update responsible for the balance between new

measurement and predicted values.

Start

// Initial:

P (k = 0, s) = 0 (1)

For k ≥ 1 and s ∈ S

// Motion Update:

P−(k, s) =

∫

S

qk(s|sk−1)P (k − 1, sk−1)dsk−1 (2)

// Information Update:

P (k, s) = αP−(k, s) + (1− α)X(k) (3)

EndFor

End

where:
S – state space

s – state (spatial and velocity components)

k – time moment

α – smoothing coefficient α ∈ (0, 1)
X(k) – measurements

P (k, s) – estimated value of objects

P−(k, s) – predicted value of objects

qk(s|sk−1) – state transitions (Markov matrix)

This algorithm allows the suppression of the zero valued

noise and enhancement of positive or negative signals.

Low-pass filtering property is related to smoothing coeffi-

cient and Markov matrix. High α value gives narrower low-

pass filtering, so more steps (k) are necessary for steady-

state. Such conditions influence the improving SNR and allow

detection of weaker objects.

The Markov matrix is responsible for the switching between

trajectories. High ratio of switching is the source of SNR

reduction. Trajectories that are fitted to the expected trajec-

tories of object are desired. This matrix is very sparse and ST

TBD algorithm should be not implemented using (1b) formula

directly.

The output of ST TBD algorithm is the formula (1b) or

(1c). The predicted state-space (1b) is assumed as an output in

this paper. The state space influences the trajectories definition

and overall quality of tracking. Simplest variant, based on

the direct relation between measurement and state-space, is

assumed. The 1D measurement are extended to the 2D state

space, where the second dimension is the velocity. Such

formulation for lack of the switching between trajectories is

the velocity filter. It allows the testing of the performance

for ST TBD algorithm for best case – maximal fitting of

trajectories. Markov matrix has zeros and ones only. Allowing

of switching between trajectories reduces overall performance,

so boundary case is tested in this paper.

III. TRACKING OF NOISE OBJECT

The noise object is special case of signal – the mean

value is zero and values are random (Fig. 4). Such signal

cannot be processed by ST TBD algorithm directly. The stealth

technologies are quite often applied to some objects, so weak

signals are observed. The stealth techniques are applied for

the reduction of periodic signals that are common for engines.

Periodic signals could be detected using frequency analysis,

that is the main technique for the detection of such objects.

Objects could be sources of signal, but could be also a barrier

for the background noise.

The noise difference between object and the background

could be applied for the tracking of such objects. Low

differences between object and the background cannot be

observed, unfortunately. Long time measurements and special

TBD algorithms allow the detection and tracking.

The application of the variance/standard deviation estimator

for the preprocessing of measurements (Fig. 5) is proposed

in [12]. Fixed size of the object (number of samples) and the

fixed size of the moving window are applied.

X(k, s) = std (M(k, s− L) · · ·M(k, s+ L)) (4)

The measurements M are preprocessed using window size

2L+ 1. Another approach is based on the comparison of two

distributions. The global distribution is calculated for overall

measurements for the current time moment. Sliding window

is applied for the calculation of the local distribution. Both

distributions are compared for every position of the moving

window. Comparison is possible using chi-square formula for

example [12] or dot product formula [13].
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Fig. 4. Example of 1D measurements of noise object: Simple to detect object;
Measurements disturbed by the Gaussian background noise; Object hidden in
the Gaussian background noise.
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Fig. 5. Preprocessing of measurement space scheme.

IV. FILTER BANK FOR TBD

The standard deviation is an interesting estimator that could

be applied for Gaussian background noise and the additive

object Gaussian noise signals separation. The size of the object

could be variable, so detection should be based on the variable

window size.

The computation of the standard deviation is based on the

computation of the local mean value. The correction constant

is necessary for the comparison of standard deviations for

different number of samples. The standard deviation is related

to the radius of hypersphere, where the number of samples is

the dimension. The smaller number of samples is related to the

subset of the hypersphere in lower dimension, with the same

radius. The most important problem is that signal is random.

The computation of the standard deviation is based on the

local mean value, so subset has not identical mean value. It is

a result of the radius change.

The proposed technique is based on the computation of the

mean value for higher dimension (longest window size or all

samples). The mean value is applied for the computations

of standard deviation for the smaller sample sets. It is also

computationally important. Instead formula (4), new proposed

formula is applied:

Xbank(k, s) = kbank

√

√

√

√

1

2L

L
∑

i=−L

(E −M(k, s+ i))
2

(5)

The kbank correction constant is the value dependent on the

filter (Fig. 6). The number of filters should be reduced due to

high computation cost of TBD.
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Fig. 6. Filter banks schematic.

The value E is the mean value for all samples, not only

inside the moving window. Each filter is assigned to the

different window size so longer window size filter should be

preferred. The following relation should be applied:

k1 < k2 < · · · < kN (6)

for example:

ki = 2L+ 1 (7)

as a weight value dependent on the window size. The ST TBD

is linear transformation of signal, so correction constant could

be added not to the input measurement transformation, but for

TBD output result. The selection of the maximal value could

be used as data fusion operation, but other approaches are

possible also.

V. RESULTS

The Monte Carlo test is assumed for the performance

analysis of TBD filter banks. There are 3000 positions and

11 velocities. The 1D signal is processed and the standard
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Fig. 7. Mean distance error (Noise object width = 5, α = 0.95).
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Fig. 8. Mean distance error (Noise object width = 7, α = 0.95).
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Fig. 9. Mean distance error (Noise object width = 9, α = 0.95).

deviation of the object is 1.0, the standard deviation of the

background noise is variable (0-2.5), but fixed for single test.

There are 1000 tests for every tracking scenario (different

lengths of the object are assumed: 5, 7, and 9).

Mean distance error is depicted in Figs. 7– 12 after 80

iterations, for α = 0.95 and α = 0.98. The estimated position
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Fig. 10. Mean distance error (Noise object width = 5, α = 0.98).
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Fig. 11. Mean distance error (Noise object width = 7, α = 0.98).
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Fig. 12. Mean distance error (Noise object width = 9, α = 0.98).

is the obtained as position for largest value of the state space.

This is not optimal solution for the real tracking system, but it

could be used for tests. Much better results could be obtained

if the second tracking algorithm is applied for outputs, for

multiple target tracking.
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Fig. 13. Velocity error score (Noise object width = 5, α = 0.95).
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Fig. 14. Velocity error score (Noise object width = 7, α = 0.95).
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Fig. 15. Velocity error score (Noise object width = 9, α = 0.95).

Estimation of the velocity together with the position is also

possible. The next results are related to the object velocity

error (Fig. 13 – 18). The velocity cannot be considered without

the position. The scoring approach is assumed for the velocity

and position criteria. The value “1” is assigned to the case

when the object position error is within 〈−10 + p, p+ 10〉
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Fig. 16. Velocity error score (Noise object width = 5, α = 0.98).
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Fig. 17. Velocity error score (Noise object width = 7, α = 0.98).
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Fig. 18. Velocity error score (Noise object width = 9, α = 0.98).

range, where the p is the known position and the velocity is

within 〈−1 + V, V + 1〉 range, where p is the known velocity.

Data fusion using filter bank according to Fig. 6 is shown

in Fig. 19 for α = 0.98. The selection of the maximal value

from multiple TBD gives the best results.
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Fig. 19. Mean position error (α = 0.98) after data fusion for different object
sizes.

VI. DISCUSSION

The position error is not equal to the zero for Monte Carlo

test even for high SNR case. It is a result of the noise type

of the object signal. This is not an important problem for the

tracking. Such differences are obtained for the single estima-

tion of the position using maximal value. The observation

of the results for limited position range using an additional

conventional tracking filter is possible. The reduction of the

error could be obtained using hierarchical tracking approach.

The increasing of the background noise influences the

detection possibilities. The detection is the function of the

object size, because larger objects are simpler to detect. The

detection of the object with size 5 is possible for s = 1, with

size 7 is possible for s = 1.1 and with size 9 is possible

for s = 1.3 (α = 0.95). The detection of the object for

higher background noise is still possible, but the performance

is lower, so mean value of distance error is higher. Application

of the second tracking filter with gate that is applied for the

selection of the testes area should be considered for the further

improvement.

The tracking and detection possibilities are improved for the

larger smoothing coefficient (α = 0.98), for example s = 1.4
for object size 7.

The object of the assumed size is well detected by the fitted

filter (similar widths of the filter and object), what shows that

filter bank approach is desired. The fitted filter results are

located in right part of figures. Separate results of the TBD

filters are considered for testing this behavior.

The velocity test using proposed technique shows that

velocity could be estimated together with position with good

accuracy. It shows that position and velocity are related to

the object for low background noises. Similar results for the

curves are obtained. The fitted filter results are located in right

part of figures.

VII. CONCLUSIONS

The proposed filter bank allows the signal processing of the

noise object with unknown length. The filter banks response

for all TBD filters gives very good results (mean position

errors about a few samples or pixel). The size of the object

is rather small. The Monte Carlo test allows the estimation of

the performance of TBD filters.

The main problem of ST TBD is the computation cost,

but FPGA and GPGPUs devices allow the processing in real

time [14]. The cost of the bank filter is linear and the number

of the ST TBD blocks influences the results.

The application of specific implementation [15], [16], [17]

for selected processing device gives the possibility of the more

efficient implementation with lower computational cost, what

is interesting research area.
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