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Partial Reconfiguration
in the Field of Logic Controllers Design

Michał Doligalski and Arkadiusz Bukowiec

Abstract—The paper presents method for logic controllers
multi context implementation by means of partial reconfigura-
tion. The UML state machine diagram specifies the behaviour
of the logic controller. Multi context functionality is specified
at the specification level as variants of the composite state.
Each composite state, both orthogonal or compositional, de-
scribes specific functional requirement of the control process.
The functional decomposition provided by composite states
is required by the dynamic partial reconfiguration flow. The
state machines specified by UML state machine diagrams are
transformed into hierarchical configurable Petri nets (HCfgPN).
HCfgPN are a Petri nets variant with the direct support of
the exceptions handling mechanism. The paper presents places-
oriented method for HCfgPN description in Verilog language.
In the paper proposed methodology was illustrated by means of
simple industrial control process.

Keywords—HCfgPN, UML state machine diagram, Verilog,
logic controller

I. INTRODUCTION

DEVICE implementation of reconfigurable logic con-
trollers (RLCs) with the use of Field Programmable Gate

Array devices (FPGA) is a quite commonly used solution
[1]–[3]. Modern Integrated Circuits (ICs), including FPGA
devices, provide opportunity for implement faster, bigger and
safe control systems. Improved techniques for design should
follow the growing technological capabilities, allowing for it
full use. Dynamic Partial Reconfiguration is a good example
of powerful functionality [4], [5]. It provides the possibility of
multi context design, where contexts are switched when other
blocks of the device are turned on.

The paper presents modular approach for Logic Controllers
(LCs) developing based on UML state machines and Petri
nets. Both models are accepted form of logic controllers
specification [6]. Full and coherent modularity on each stage
of developing process simplifies and streamlines the design
of LCs oriented for partial reconfiguration [7], [8]. The
application of Partial Reconfiguration in the field of LCs,
improve its quality not only by improving the functionality
but also by reducing power consumption and minimization
of the allocated resources. The application of the modern
specification technics, UML language in particular [9], will
simplify partial reconfiguration oriented design. Petri nets give
the possibility for logic controller formal verification [10], for
example by means of Gentzen reasoning techniques [11]–[13].
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Context switching techniques presented in the paper, provide
adaptation of control algorithm of the production process.
Context is the alternative specification (version) of particu-
lar function provided by logic control algorithm. Alternative
context is required when production process has two or more
alternative formulas, e.g. ingredients may be in the form of
raw material or semi-finished product. It’s not necessary to
remodel whole control algorithm but only some parts should
be adjusted to actual conditions.

II. PARTIAL RECONFIGURATION

Classical design flow of LCs implemented in the FPGA
devices results preparation of one final .bit or .mcs config-
uration file. In this approach full static reconfiguration requires
reload of whole FPGA device configuration which causes
interrupt control. There is no possibility for changing context
of the control algorithm without direct context switching
implemented within logic controller. It is very possible that
at the specification stage, not all contexts will be known.
Also alternative context may be introduced after the control
system deployment. So it will be no possible to implement all
alternative contexts in one control algorithm. The other issue
of direct context implementation results from the size of the
algorithm. Each context will increase space required for the
implementation. Partial reconfiguration (PR) is the feature of
modern FPGA devices that provides control switching. Some
parts of the devices may be reconfigured, when others will be
preserved. The paper will consider dynamic reconfiguration
when changes in the configuration are provided in run-time. In
the Difference based partial reconfiguration (DBPR) oriented
developing process, two configurations are compared and,
as a result, differential configuration file is generated. This
approach is dedicated rather for small design changes e.g.
Block Ram contents modification [14], [15].

Full benefits from the partial-oriented design comes with
modular based partial reconfiguration (MBPR). At the be-
ginning static (SP) and reconfigurable partitions (RP) are
identified within the design. For each RP, set of alternative
reconfigurable modules (RMs) is developed. The bottom-
up synthesis is performed and each module is synthesized
separately. Finally top-level module connect both static and
reconfigurable modules. During dynamic module-based partial
reconfiguration, structure of separated reconfigurable partition
may be changed without affecting the operation of other
modules. The paper presents revised approach for PR design
of logic controllers. Previous methodology increase design
complexity [16]. It requires the application of bus macro
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between reconfigurable module and other modules. Bus macro
was an interface between dynamic modules and other modules
(both static and dynamic), implemented by means of three-
state buffers. In the new modern FPGA devices and updated
CAD software (Plan Ahead) it’s not required to add bus-
macro inside the design. The management of the partitions
and its configurations (reconfigurable modules) is transparent
and intuitive.

Controller synthesis

Reconfigurable modules synthesis

Top module synthesis

Reconfigurable partitions constrain

Constrains definition (UCF file)

Reconfigurable partitions constrain

Top level implementation

Contexts implementation

Reconfigurable partitions constrain

Full bitstreams generation

Partial bitstreams generation

Controller specification

Top level specification 

Contexts identification

Contexts specification

Fig. 1. Partial reconfiguration design flow.

Figure 1 presents general outline of Partial reconfiguration
flow. At the controller specification stage top level specifica-
tion is elaborated and static modules are specified as well.
Next contexts are identified and specified. In the proposed
approach controller is specified by means of UML state
machine diagram. Specification is transformed into Petri net
model (HCfgPN) and next synthesized using HDL language
and CAD tools into EDIF or NGC format. Controller speci-
fication and synthesis was described in section III in details.
Synthesis of top module and reconfigurable modules may be
performed concurrently. Reconfigurable modules within top
level module are described as black boxes at the synthesis
stage. For each reconfigurable partition (RP) area constrains
should be described by means of UCF file. It is necessary
to guarantee that the biggest reconfigurable module (RM)
will fit respective RP. Both static and reconfigurable parts of
the logic controllers should be implemented. Static partitions
should be implemented only once and next, to reduce time of
development, promoted to other configurations (contexts). The
PR flow results in set of .bit files both for full and partial
configuration.

III. SPECIFICATION AND SYNTHESIS

UML state machine and Hierarchical Configurable Petri Net
are two component models of the Dual Specification (DS) [17],
[18]. Modularity of the DS, simplify functional decomposition

of the control system. Each composite state or macroplace is
responsible for particular functionality implementation. Each
functional block is implemented as separated module and next
may be reconfigured independent.

The proposed design flow will be illustrated by simple
production process. The process consists in measuring out two
liquid substances in containers A and B and then mixing them
in the reactor vat (Fig. 2). A finished product is poured through
draining valve into the containers. During the execution of the
production process there may appear both warning exceptions
(defect) and critical ones (failure). A temporary freezing of
the process performed from an operator’s panel, for example,
in order to carry out a visual inspection of the reactor, can be
an example of a warning-type exception. This exception does
not affect the manufacturing process and, this is why, it can
be resumed (reactivated).
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Fig. 2. Production process scheme with exception handling.

The difference between critical and noncritical exception
handling is that after a critical exception preempted process
can’t be resumed and emergency procedure should be per-
formed immediately. Exception that allows the resumption of
non-critical control processes is noncritical, preempted part of
control process can be resumed. This approach is natural in
the field of control algorithms specified by means of UML
state machine diagrams, however there is no direct support
for exception handling in Petri net model.

UML state machine diagrams for given control process
was presented in Fig. 3 and Fig. 4. There are two levels
of hierarchy. First one includes main state machine, second
one includes submachines included in CS2 and CS3 com-
posite states. Composite state CS2 consists of two concurrent
regions. Each region consists one state [sub]machine. These
submachines were marked by history pseudostate, it means
that for state CS2 noncritical exception handling mechanism
was enabled.

After (noncritical) preemption control algorithm will handle
the exception in state Defect alarm by action do/Alarm. Signal
Alarm indicates abnormal situation by flashing lights on con-
trol panel. Substrates in Tank A and Tank B are not yet mixed,
after visual inspection if there are no contaminants the process
can be resumed. If submachine starts from history pseudostate,
after resumption last active state will be reactivated.
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The example of critical exception handling was presented
in case of preemption form state CS3. Three concurrent
submachines contain regions that have been marked by an
initial pseudostate.

Critical exceptions thrown in CS3 state will be handled in
the Emergency emptying state. It is an emergency procedure
– substrates were mixed partially and process cannot be
continued. The reactor must be emptied from the contents
by the emergency valve EV1. After proper emptying, state
machine will change state to Failure alarm and wait for
resumption.
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Fig. 3. Logic controller behavioral specification – context A for composite
state 3.

In this example, composite state CS3 has two contexts
A and B, where measuring containers are emptied in a different
order. Context A describes parallel and context b sequential
emptying. The specification in the form of UML state machine
diagram presented in the Fig. 3 and Fig. 4 can be directly
transformed into hardware description language [19]. Such
approach requires UML state machine formal verification,
however Petri nets offer wider range of methods. In the
proposed design methodology specification in the form of state
machine is transformed into hierarchical configurable Petri net
model (HCfgPN) [20].
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Fig. 4. Alternative context (B) for composite state 3.

Top level state machine elaborated at the specification state
was transformed into Subnet 1. There is no exception handling
at top level of state machine diagram so transitions T fin, T i,
T a, Tw can be omitted. For a better understanding of the
net functioning, transitions in Fig. 5 have been kept and the
condition false was assigned permanently.
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Fig. 5. Subnet no. 1 for top level state machine.

Subnet 1 contains two macroplaces: mp2 and mp3. These
macroplaces correspond to composite states Cs2 and Cs3 and
are linked with Subnet 2 and Subnet 3 respectively. Subnet 2
implements noncritical exception handling. Transition T init

firing activate Subnet 2. Preemption condition was assigned
to transition T i, resumption condition to transition T a. Both
conditions t5 and t6 are signals from supernet (Subnet 1) and
in fact they are the logical condition of firing transitions T5
and T6.
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Fig. 6. Subnet no. 2 for CS2 composite state.

Subnet 3 implements critical exception handling mechanism
by assigning t7 condition to transition Tw. Enabling transition
T7 form Subnet 1 also activates transition Tw from Subnet 3.
Transition Tw provides token movement from place P a to
P init and killing (removing) tokens from places P10 to P17.
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This behavior is not specific in comparison to classic Petri
nets but simplify exception specification [17].
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Fig. 7. Subnet no. 3 for CS3 composite state (context A).
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Fig. 8. Subnet no. 3 for CS3 composite state (context B).

Subnet 2 has only one context. This module will be pre-
served as static part of logic controller. If another context will
be elaborated for Subnet 2, the design flow should restarted.

Figures 7 and 8 describe alternative versions of composite
state Cs3. State p17 has no input. In fact this state will block
transition T fin firing. This state was preserved intentionally
in order to to be consistent with the UML state machine dia-
gram and proposed method of the transformation. Alternative
context of Cs3 provides sequential tanks emptying, the base
emptying was performed parallel way.
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Fig. 9. Selected pblock for static and reconfigurable part.

module Net3 ( c lk , r e s e t , Tf in , x2 , x4 , x5 , x6 , t2 ,
t7 , y3 , y4 , y5 ) ;

input c lk , r e s e t , x1 , x2 , x4 , x5 , x6 , t2 , t 7 ;
output Tf in , y3 , y4 , y5 ;
( . . . )
a s s i g n y3 = P10 & Pa ;
a s s i g n y4 = P12 & Pa ;
a s s i g n y5 = P15 & Pa ;
( . . . )
a s s i g n T i n i t = P i n i t & t 2 ;
a s s i g n T f i n = Pa & P11 & P13 & P17 & ˜ ( Ti & Tw) ;
a s s i g n Ti = Pa & 0 & ˜Tw;
a s s i g n Tw = Pa & t 7 ;
a s s i g n Ta = Pi & 0 ;
( . . . )
always @( posedge c l k )
begin

i f ( r e s e t ) P i n i t <= 1 ;
e l s e P i n i t <= ( P i n i t & ˜ T i n i t ) | (Tw | T f i n )

;
end
always @( posedge c l k )
begin

i f ( r e s e t ) Pa <= 0 ; / / 0 |1
e l s e Pa <= ( Pa & ˜ ( Ti | Tw | T f i n ) ) | ( T i n i t

| Ta ) ;
end
always @( posedge c l k )
begin

i f ( r e s e t ) P i <= 0 ;
e l s e Pi <= ( P i & ˜ Ta ) | ( Ti ) ;

end
( . . . )
always @( posedge c l k )
begin

i f ( r e s e t ) P10 <= 0 ;
e l s e P10 <= ˜Tw & ( ( P10 &˜( T12 ) ) | ( T i n i t ) ) ;

end
( . . . )
always @( posedge c l k )
begin

i f ( r e s e t ) P12 <= 0 ;
e l s e P12 <= ˜Tw & ( ( P12 & ˜ ( T13 ) ) | ( T i n i t ) )

;
end
always @( posedge c l k )
begin

i f ( r e s e t ) P16 <= 0 ;
e l s e P16 <= ˜Tw & ( ( P16 & ˜ ( T16 ) ) | ( T15 ) ) ;

end
always @( posedge c l k )
begin

i f ( r e s e t ) P17 <= 0 ;
e l s e P17 <= ˜Tw &(( P17 & ˜ ( T f i n ) ) ) ;

end
a s s i g n L o c a l C o n f i g = Pa & ˜ ( Ti & Tw) ;

a s s i g n T13 = P12 & ˜ x4 & L o c a l C o n f i g ;
endmodule

Fig. 10. Subnet 3 description in Verilog.

Each subnet was described in HDL language. In this partic-
ular case, Verilog language was used but VHDL description
may be used as well. Each subnet was described separately
and four functional block was an result. Figure 9 presents
RTL level of the logic controllers. The communication (syn-
chronisation) beetwen block is performed by dedicated signals.
For example signal tfin informs that subnet is finisched and
outgoing transition from macroplace related to this net should
be fired.
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Fig. 11. In-circuit verification results. Left – context A, right – context B. Waveforms from Tektronix TLA 5204 logic analyser.

Till this step elaborated models are platform independent.
The proposed specification method guarantee that the logic
controller may be synthesized and implemented in FPGA
device from any vendor. The logic controller was implemented
into the Xilinx Virtex 5 FPGA device, subnets were synthe-
sized by means of Xilinx ISE (13.2).

The further steps were executed by means of Xilinx Plan
Ahead software. The area constrains for the reconfigurable
partition was bounded. In this presented case the areal covers
only Slice elements. If other elements like BRAM or DSP will
be used for the implementation it’s necessary to grantee that
it will be inside selected partition pblock.

Figure 12 presents selected area constraints for both
static and reconfigurable blocks. Reconfigurable partition was
marked as pblockU3 and contains only module U3(Net3).
The PBlock U1U3U3 contains other static part of the logic
controllers including stimulus generator required for in-circuit
verification. Fig. 12 also presents hierarchical structure of
the design. Top level unit DUT contains two modules: logic
controller U1 and stimulus generator (U2). Logic controller
contains three modules, where U3 block contains two recon-
figurable modules: Net3a and Net3b, for contexts A and B
respectively.

IV. IMPLEMENTATION AND VERIFICATION

Figure 13 presents the implementation results. Routed nets
and placed components for the Net3 were marked in red. All
other placed components and routed nets for Net1, Net3 and
test driver module were marked in yellow. Presented example
is rather simple. Differences between configurations imple-
mentation at the components level are minor, therefore picture
for the second configuration has been omitted intentionally.

In-circuit verification was performed by means of logic
analyser. The additional module responsible for stimulus gen-
eration (SG) was implemented. The logic controller was driven
by SG modlule, output were connected with the logic analyser.

The results of contexts verification were presented in
Fig. 11. The waveform presents both input and output signals

Fig. 12. Selected pblock for static and reconfigurable part.

Fig. 13. View at the components and nets level.

for the logic controllers. Simulation scenario covers both:
critical and noncritical exception handling. The noncritical ex-
ception is triggered by signal defect and took place at a 75 ns.
It results in the P3 state activation. Subnet 2 is deactivated by
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transition T i firing. Resumption of control proces took place
at a 105 ns, when signal reactivation becomes active. Subnet 2
is activated by transition T a firing. Second scenario – critical
exception took place at a 205 ns and was triggered by the
signal failure. Token from place MP3 was moved to P4. Subnet
3 is preempted and can’t be resumed. All tokens from places
P10 to P16 are deleted (killed) according to special rules of
transition Tw triggering. Token from the place P a is moved to
place P init. The differences beetwen context occurs at 150 ns.
First configuration (context) describes parralel Tank A and
Tank B emptying where both signals y3 and y4 are active.
In case of context B (right waveform) tanks are emptyied in
sequention: first Tank A and next Tank B.

Detailed verification by means of logic analyser guarantee
that logic controller will work properly. Of course in case of
large industrial proceses visual analysis is rather hard. The
better solution is hardware in the loop verification (HIL). The
HIL module can be implemented in the same FPGA device
as the controller logic. The advantage of such solution is the
ability of logic controller selft test between each production
process or according to the schedule. Proper functioning of the
device and the detection of defects is very important especially
in the field of dependable systems.

V. SUMMARY

In real industrial processes the difference between contexts
will be significant. It will be reflected in controller complexity.
In case of direct implementation of context switching, each
context will increase required capacity of the FPGA device.
It may result that the logic controller will not fit into selected
FPGA device. Alternatively techniqes for logic elements opti-
misation can be used [3], [21]. The proposed methodology
of the logic controller design will support multi context
switching at system level. The paper presents way for logic
controller implementation where selected functional blocks
may be reconfigured. The advantage of this approach is the fact
that at each stage from the specification to the synthesis and
implementation functional decomposition is preserved. Further
work will cover the implementation of the context switcher.
It will be a supervisor of the contexts and, according to
actual needs, will force reconfiguration of the logic controllers.
The context switcher may be implemented as separate logic
controller or algorithm dedicated to softprocessor embeded in
FPGA device.

The ability of the FPGA devices partial reconfiguration
enables the development of new functionality or the increase
the broadly defined quality of logic controllers.
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[16] M. Doligalski and M. Wȩgrzyn, “Partial reconfiguration-oriented design
of logic controllers,” in Proceedings of SPIE : Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics
Experiments, vol. 6937, 2007, p. 10.

[17] M. Doligalski, Behavioral specification diversification of reconfigurable
logic controllers, ser. Lecture Notes in Control and Computer Science.
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