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Numerically Stable and Efficient Implementation

of a Continuous-Discrete Multiple-Model Estimator
Mirosław Sankowski and Wojciech Buda

Abstract—This paper deals with the problem of implementing
adaptive radar tracking filters based on continuous-time models
of target motion and on discrete-time models of measurement
process. The particular difficulties addressed include: nonlinear
and non-stationary target movement models with uncertain pa-
rameters, and low data rate due to a rotating radar antenna. The
proposed tracking filter relies basically on the continuous-discrete
variant of the extended Kalman filter (EKF), the probabilistic
data association (PDA) technique and the interacting multiple-
model (IMM) state estimation scheme. Numerical properties of
the algorithm are discussed and a software implementation is
developed using the open-source BLAS library. Several design
concepts are combined to assure numerical stability, convergence
and efficiency of the estimator.

Keywords—Radar tracking, continuous-time systems, nonlin-
ear filtering, numerical complexity, implementation

I. INTRODUCTION

THE essential task of the tracking filter is to process

discrete-time (d-t) radar measurements of motion param-

eters of a target in order to reduce the measurement errors

by means of time averaging, to estimate the object’s velocity

and acceleration and to predict its future positions. Widely

accepted basis for tracking filters is the Kalman filtering (KF)

theory [1], [2].

Radar tracking becomes extremely challenging in the case

of low data rates combined with the problem of structural

non-stationarity of a target model. The representative practical

cases are manoeuvring aircrafts or ballistic missiles, which are

characterised by mode transition from boost to coast phase.

In both cases the technical problem corresponds to a sudden

change in the target dynamics that occurs at an unknown

instant.

The considerations presented in this work originate from the

problem of radar tracking of tactical ballistic missiles, which

is subject to severe constraints, including: radar coverage

limitations, possible low signal-to-noise ratio, nonlinear and

non-stationary movement models with uncertain parameters.

Basic difficulties encountered in this problem include:

• continuous-time (c-t) dynamic models are nonlinear and

not suitable for analytical discretization,

• sampling period is long, as compared to the target dy-

namics, hence simplifications neglecting the c-t nature of

models cannot be accepted.

An interesting technique, often mentioned in the literature

[3] but rather rarely used in tracking [4], is the continuous-

discrete (c-d) filter, which relies on a c-t extended Kalman
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filter (EKF) for prediction stage [2] and on a d-t (E)KF for

filtering stage [1]. This c-d technique is employed as the basis

for state-estimation. In order to cope with the non-stationarity

of the model, the interacting multiple model (IMM) adaptive

approach [3], [5] was selected. Since no track crossings are ex-

pected, robustness of the estimator against false measurements

is accomplished by using the probabilistic data association

(PDA) technique [3], [6].

A substantial effort has been devoted to the problem of nu-

merical implementation of the KF-based estimators. Classical

approach to robust Kalman estimation is based on a square-

root filtering [7]. Some representative references related to

the selected IMM and PDA techniques are [8] and [9].

Implementation aspects of the c-d estimators were addressed

by Jorgensen and Thomsen [10] who proposed an efficient

algorithm for propagating state vector and covariance matrix

of the c-d EKF. They applied a modified diagonal implicit

Runge-Kutta method with an integration step size controller

such that the computed solution satisfies the required accuracy

of c-t prediction by using a minimum number of numerical

integration steps. The efficiency of the algorithm was demon-

strated for a large scale chemical process model (order of 25-

200). Because the method presumes that the spectral density

matrix of the system noise is time invariant, which is not

the case here, and as the system considered is characterised

by relatively low dimension, the method is assessed not

adequate for this application. Another method for c-d EKF was

proposed by [11], which employs a trapezoidal approximation

of the state propagation and the Gauss-Legendre formula for

covariance prediction. A suitable method for adaptively tuning

the integration time interval was also proposed.

A combination of software engineering and applied mathe-

matics must be used to implement a complex state estimation

algorithm. The following presentation involves an algorithm

block diagram and its C language pseudocode skeleton. Ac-

cording to this structure the analysis of numerical properties

of the involved mathematical formulae is discussed and their

implementation is outlined using BLAS, the open-source linear

algebra library. For the illustration simplicity a two-model c-d

IMM estimator is discussed, though similar approach can be

followed for any configuration of models.

This paper is related to the previous, more theoretical

oriented paper [12], which addresses in details mathematical

formulation of target and sensor models and presents the

simulation results for a sample scenario. This work extends

the discussion published in a conference paper [13] and deals

with numerical implementation aspects of an adaptive c-d

tracking algorithm. The major contribution of this paper is

a practical methodology presented as an estimator design
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case study, which takes into consideration various aspects

influencing its numerical properties. Two major objectives that

shape the presented approach are: to assure estimation stability

and convergence, and to minimise computer resource needs,

which translates to the number of multiplications, additions

and memory storage needs.

The organisation of the paper is as follows. In section II the

underlining problem of nonlinear estimation of ballistic target

is introduced along with the data flow diagram of multiple-

model c-d estimator and the implementation assumptions. The

estimator is analysed from the numerical aspect in section III

and its implementation using BLAS library is described. In

section IV the outcomes are summarised and conclusions are

drawn.

II. PROBLEM FORMULATION

The following mathematical notation will be used to char-

acterise filter equations: α, β denote scalars, x,y are column

vectors, A,B,D,E,G,H mean general matrices, 0r×c de-

note a null matrix (r rows and c columns), Ir×r refer to

a unit matrix (r by r). Subscript T denotes a triangular, S

a symmetric, while P a symmetric positive definite matrix.

A. Radar Model

The considered sensor is a 3D monopulse radar with

a rotating antenna characterised by detection range exceeding

several hundreds kilometres and measurement update interval

corresponding to the antenna revolution time ART=5,...,12 [s].

It is assumed that the radar provides at discrete instants n

unbiased measurements (plots) of object positions: slant range

ρ̃[n], azimuth α̃[n] and elevation ε̃[n], which are disturbed by

additive non-stationary Gaussian-distributed white noises with

zero expectations and variances σ2
ρ , σ2

α and σ2
ε , respectively.

B. Target Model

Two phases (modal states) of a ballistic flight are recognised

that correspond to hypotheses {Hj},j ∈ {0, 1}:

• boost phase (H0), which lasts from the launch instant tL
till the time tB of the booster cutoff,

• coast phase (H1), from tB till the impact time tI , when

the movement is a free ballistic flight,

which are represented by two dynamic models described by

a suitable set of nonlinear stochastic differential equations

[12]. The models rely basically on a geodetic model of the

Earth and address several sources, which influence target

movements, including: gravity, thrust, drag, Coriolis and cen-

trifugal factors.

Moreover, it is assumed that transitions possible between

the modal states are described by a Markov model defined by

a-priori probabilities pj,k, for j, k = 0, 1, that the target will

make transition from the modal state Hj to Hk. Models of

target motion are represented in a state-space form by a c-t

system equation and a d-t measurement equation

ẋj(t) = f j

(

t,xj(t)
)

+wj(t) (1)

ỹ[n] = Cjxj [n] + r[n] (2)

for j = 0, 1. In the above xj(t) denotes a state vector, f j()
is a nonlinear function describing the deterministic part of the

model, input wj(t) is the c-t white Gaussian noise with zero

mean and spectral density matrix W j(t). The state vector

xj(t) = [ρ(t), α(t), ε(t), vρ(t), vα(t), vε(t), x, y]
T

(3)

where x and y describe the evolution of an uncertain parameter

of the model, which must be estimated on-line.

The state vector and the model used differs from similar

models of ballistic flight formulated in radar-principal coor-

dinates [14] as they employ Cartesian line-of-sight velocity

coordinates vρ(t), vα(t), vε(t). This improves diagonal domi-

nance and numerical conditioning of covariance matrices and,

consequently, the numerical properties of the estimator [15].

The measurement vector

ỹ[n] = [ρ̃[n], α̃[n], ε̃[n]]T (4)

characterised by a covariance matrix R[n] =
diag{σ2

ρ, σ
2
α, σ

2
ε}. It is also assumed that the input and

measurement noises are non-stationary, in general.

The output matrix

Cj = [I3×3,03×3,03×2] (5)

is common for both models and completes Eq. (2).

Note that for the particular application considered [12]

the process equation (1) is nonlinear, while the measurement

equation (2) remains linear, which results from formulating

the models (H0, H1) in sensor principal coordinates. If this

was not the case, Eq. (2) would be nonlinear and a suitable

approximation of this nonlinearity must be applied [3].

C. Continuous-Discrete IMM

The complete description of state in a 2-model IMM filter

at time n consists of a-posteriori estimates x̂j [n|n], j = 0, 1,

of the state vector (3), corresponding covariance matrices

P j [n|n] and model probabilities µj [n] that evaluate the hy-

pothesis that the target is in the modal state Hj at time n.

A block diagram of the two-model IMM tracking filter is

shown in Fig. 1. The algorithm can be divided into a state

vector initiation procedure (IMM step 0) and 6 recursive steps

(IMM step 1 to 6), which are arranged into two blocks (I and

II) and separated by the measurement validation procedure.

D. Implementing Matrix Computations Using BLAS

The BLAS (Basic Linear Algebra Subprograms) is a set

of routines for performing basic vector and matrix operations

[16]. The Level 1 BLAS includes scalar, vector and vector-

vector operations

y← αx+ y (6)

as well as, scalar dot products and vector norms. The Level 2

BLAS includes matrix-vector operations

y← αAx + βy (7)
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Fig. 1. Structure of the two-model continuous-discrete IMM filter (data processing view).

and provides functions for solving ATx = y. The Level 3

BLAS performs matrix-matrix operations

C← αAB+ βC (8)

and includes routines for solving D← αA−1
T B. Since BLAS

libraries are efficient, portable, and open source, they are often

used as a basis for the developing linear algebra software.

During the course of this paper the following BLAS func-

tions are referred to

daxpy : y← αx + y (9)

dgemv : y← αAx + βy (10)

dsyr : AS ← αxxT +AS (11)

dsyr2 : AS ← αxyT + αyxT +AS (12)

dsyr2k : AS ← αBDT + αDBT + βAS (13)

Three additional functions were developed “in-house” that

deal with symmetric matrices

dsycpy : AS ← BS (14)

dsysum : AS ← AS + αBS (15)

dsyform : AS ← αAS + βDBSD
T (16)

BLAS functions are designed to use minimum computer

memory for data storage and minimum number of operations

by exploiting the properties of different types of matrices.

Recent BLAS implementation called ATLAS (Automatically

Tuned Linear Algebra Software) provides also support for

certain processor features like registers, cache memory or

vector processing units, which can further improve matrix

computation performance on various target architectures [17].

III. C-D ALGORITHM IMPLEMENTATION

The pseudocode algorithm of a single iteration of the two-

model c-d IMM filter is shown in Fig. 2. The particular algo-

rithm functions and their implementation details are described

in the following subsections.

It is assumed that a target is detected during the presumed

part of flight and that the detector provides a set of unbiased

measurements, which are used to calculate initial values of

state estimates x̂j [n0|n0]. The values of the a-priori transition

probabilities {pj,k}
1
j,k=0 are assumed known and constant.

The a-posteriori model probabilities have their initial values

{µj [n0]}
1
j=0.

A. IMM Block 1: Prediction

a) IMM Step 1: Transition Probabilities: In order to

produce input values for particular filters, conditional tran-

sition (mixing) probabilities are calculated, which describe

probability that the target made the transition from modal state

Hj to Hk at the instant n− 1, based on data collected up to

n− 1. Scalar formulae

µn−1
j|k =

1

ck[n− 1]
pj,kµj [n− 1] (17)

for j, k = 0, 1, with normalisation constants ck[n − 1], are

calculated without using BLAS.

b) IMM Step 2: Mixing of Estimates: Before model-

matched filtering (steps 3 and 4) the operation of mixing partial

estimates and respective covariance matrices is performed

x̂
r
k[n− 1|n− 1] =

1
∑

j=0

µn−1
j|k x̂j [n− 1|n− 1] (18)

where x̂j [n−1|n−1] is the state estimate yielded by the j-th

mode-matched filter during previous iteration, while
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/* IMM Block 1: Prediction */

imm_step1_calculate_mixing_probabilities (&Pij, &Uj, &Uij, &Cj);

imm_step2_calculate_mixed_estimate (0, &Uij, &X0RnIn, &P0RnIn, &X0nIn, &P0nIn, &X1nIn, &P1nIn);

imm_step2_calculate_mixed_estimate (1, &Uij, &X1RnIn, &P1RnIn, &X0nIn, &P0nIn, &X1nIn, &P1nIn);

Tn = calculate_prediction_period(ART, &XnIn);

imm_step3_propagate_ctekf (Tn, dt, &X0RnIn, &P0RnIn, &X0nIn_1, &P0nIn_1);

imm_step3_propagate_ctekf (Tn, dt, &X1RnIn, &P1RnIn, &X1nIn_1, &P1nIn_1);

/* Selection of new measurements */

get_new_plots (&measurements);

associated = gating_and_association (&measurements, &X0nIn_1, &P0nIn_1, &X1nIn_1, &P1nIn_1);

/* IMM Block 2: Filtering */

if (associated) { /* PDAF measurement update */

imm_step4_update_pdaf (&measurements, &X0nIn_1, &P0nIn_1, &X0nIn, &P0nIn, ...);

imm_step4_update_pdaf (&measurements, &X1nIn_1, &P1nIn_1, &X1nIn, &P1nIn, ...);

} else { /* No plots. Track extrapolation */

imm_step4_update_plotmiss (&X0nIn_1, &P0nIn_1, &X0nIn, &P0nIn, ...);

imm_step4_update_plotmiss (&X1nIn_1, &P1nIn_1, &X1nIn, &P1nIn, ...);

}

imm_step5_calculate_model_probabilities (&Lj, &Cj, &Uj);

imm_step6_calculate_global_estimate (&Uj, &XnIn, &PnIn, &X0nIn, &P0nIn, &X1nIn, &P1nIn);

Fig. 2. Pseudocode algorithm of the single iteration of the two-model continuous-discrete IMM.

P r
k[n− 1|n− 1] =

1
∑

j=0

µn−1
j|k ·

·
(

P k[n− 1|n− 1] + ∆x̂j,k[n− 1]∆x̂
T
j,k[n− 1]

)

(19)

with

∆x̂j,k[n− 1] = x̂j [n− 1|n− 1]− x̂
r
k[n− 1|n− 1] (20)

Eq. (18) is calculated using looped function daxpy (9),

while (19) is calculated using a looped formula

AP = AP + α(BP + (x− y)(x − y)T) (21)

with (21) being split into the following steps

AP = AP + αBP (22)

AP = AP + αxxT (23)

AP = AP + αyyT (24)

AP = AP − α(xyT + yxT) (25)

As formula (22) has no corresponding BLAS procedure,

a dedicated function (15) is used, which implements the sum of

symmetric matrices. Eqns. (23) and (24) are calculated using

BLAS dsyr (11), while (25) using dsyr2 (12).

c) IMM Step 3: C-T EKF Prediction: A time period for

c-t prediction can be estimated as

T̂n =
2π

∆α̇[n|n]
(26)

with

∆α̇[n|n] = α̇R −
v̂α[n|n]

ρ̂[n|n] cos(ε̂[n|n])
(27)

where the rotational speed of the radar antenna α̇R = 2π
ART is

assumed to be constant in time, and α̇R >>
v̂α[n|n]

ρ̂[n|n] cos(ε̂[n|n]) .

The state and covariance prediction step of the state esti-

mator is based on c-t EKF

ˆ̇xj(t) = f j

(

t, x̂j(t)
)

(28)

Ṗ j(t) = F j

(

t, x̂j(t)
)

P j(t)+

+ P j(t)F
T
j

(

t, x̂j(t)
)

+W j(t) (29)

where

F j

(

t, x̂j(t)
)

=
∂f j

(

t,xj(t)
)

∂xj(t)

∣

∣

∣

∣

∣

xj(t)=x̂j(t)

(30)

is the Jacobian matrix of f j(·) [2], [3].

By numerically solving differential equations (28) and (29)

with respect to their initial values

x̂j(tn−1) = x̂
r
j [n− 1|n− 1] (31)

P j(tn−1) = P r
j [n− 1|n− 1] (32)

one obtains the predicted state vector and the respective

prediction error covariance matrix

x̂j [n|n− 1] = x̂j(tn) (33)

P j [n|n− 1] = P j(tn) (34)

The numerical integration procedure uses rectangular prin-

ciple, BLAS 1 daxpy (9) for calculating state estimate (28),

and BLAS 3 dsyr2k (13) for covariance matrix (29).

In fact, the integration of (28) and (29), which includes

multiple calculations of the nonlinear model and its Jacobian

matrix, is the most numerically expensive part of the discussed

algorithm. In order to reduce the computational complexity

the c-t propagation of state (28) can be performed accurately

using the geodetic framework, while calculations of matrices

(29) can be approximated using the spherical Earth model.
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B. Selection of Measurements

There are multiple radar plots incoming to the tracking filter,

which are either measurements of detected targets or false

alarms. In order to limit the amount of processed data the

plots are validated on the basis of a statistical test (condition

on the Mahalanobis distance)

νT
j,i[n]ω

−1
j [n]νj,i[n] ≤ G (35)

where

νj,i[n] = ỹi[n]− ŷj [n] (36)

is the KF innovation process characterised by its covariance

matrix ωj [n],

ŷj[n] = Cjx̂j [n|n− 1] (37)

denotes a predicted target position yielded by the Hj filter,

while G denotes a suitable thresholding value that constitutes

a correlation/validation gate.

Based on the above rule an Yn-element set Y n of mea-

surements ỹi[n], 1, . . . ,Yn is selected, which contains data

recorded in the neighbourhoods of the target positions ŷj [n]
at instant n, as predicted by filters H0 and H1. Additionally,

another set Y n =
{

Y m

}n

m=0
consists of all measurements

associated with the considered track up to the instant n.

C. IMM Block 2: Filtering

d) IMM Step 4: PDA Filter Update: For each measure-

ment ỹi[n], i = 1, . . . ,Yn, at time n a conditional probability

βn
j,i = βj,i[n] is evaluated for j = 0, 1 that ỹi[n] is a true

(target originated) measurement for the filter Hj . The non-

parametric PDA algorithm is used [3]

x̂j [n|n] = x̂j [n|n− 1] +Lj [n]νj [n] (38)

P j [n|n] = βn
j,0P j [n|n− 1] + (1− βn

j,0)P
c
j [n|n]+

+Lj [n]V j [n]L
T
j [n] (39)

with

νj [n] =

Yn
∑

i=1

βn
j,iνj,i[n] (40)

Lj [n] = P j [n|n− 1]CT
j ω

−1
j [n] (41)

ωj [n] = CjP j [n|n− 1]CT
j +R[n] (42)

V j [n] =

Yn
∑

i=1

βn
j,iνj,i[n]ν

T
j,i[n]− νj [n]ν

T
j [n] (43)

The Joseph’s formula [7]

P c
j [n|n] = K[n]P j [n|n− 1]KT[n]+Lj [n]R[n]LT

j [n] (44)

is used to calculate the filtering error covariance matrix for

a single and true measurement hypothesis, with

K[n] = I8×8 −Lj [n]Cj (45)

Eq. (38) is calculated using BLAS 2 dgemv (10). Aggrega-

tion in Eq. (40) is accomplished using looped BLAS 1 daxpy

(9) and the first term of Eq. (43) using looped BLAS 2 dsyr

(11). Eq. (36) corresponds to

y = βy − αAx (46)

which may be implemented using BLAS 2 dgemv (10),

however, as Cj is the sparse matrix, this expression is cal-

culated element-by-element. Sparsity of Cj implies that also

Eqns. (41), (42) and (45) are calculated without using BLAS.

By inserting (43) and (44) to (39) a closed form

AP = αBP + (1 − α)(GBPG
T +DEPD

T)+

+D(HP − xxT)DT (47)

is obtained, which can be split into the following steps

HP = HP − xxT (48)

HP = HP + (1− α)EP (49)

AP = BP (50)

AP = αAP + (1− α)GBPG
T (51)

AP = AP +DHPD
T (52)

Calculation of (48) uses BLAS 2 function dsyr (11).

Eq. (49) is the sum of symmetric matrices done by (15),

while (50) is simple copying of symmetric matrices (14).

Last two formulae (51) and (52) are similar, however, as no

corresponding function for symmetric matrices is present in

the standard BLAS, a dedicated routine (16) is employed that

implements this type of calculations.

If at time n no new measurements are correlated to the track,

the procedure proposed by [18] is used. The method substitutes

the current estimate x̂j [n|n] with its prediction x̂j [n|n − 1]
and approximates the respective covariance matrix

P j[n|n] = P j [n|n− 1] + qnTLj [n]ωj [n]L
T
j [n] (53)

for j = 0, 1. The second component of (53) describes an ad-

ditional increase of uncertainty introduced into the estimation

process due to the fact that no new measurements can be found

in the neighbourhood of the predicted target position.

Eq. (53) corresponds to

AP = BP + αGDPG
T (54)

which can be divided into two steps

AP = BP (55)

AP = AP + αCDPC
T (56)

that fit (14) and (16), respectively.
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e) IMM Step 5: Model Probabilities: Modal state prob-

abilities are updated in each iteration of the filter according to

a scalar formula

µj [n] =
1

c[n]
Λj[n]cj [n− 1] (57)

for j = 0, 1, where the likelihood function Λj[n] describes

Yn association hypotheses corresponding to each observation

in the association gate and to the hypothesis that none of the

measurements is valid.

If no new measurements are correlated to the track, model

probabilities are substituted by their values from previous

iteration of the filter µj [n] = µj [n− 1] for j = 0, 1.

f) IMM Step 6: Global Estimate: At the end of the IMM

filter iteration an overall (combined) estimate

x̂[n|n] =

1
∑

j=0

µj [n]x̂j [n|n] (58)

is calculated using looped BLAS 1 daxpy (9).

The corresponding covariance matrix can be defined as

P [n|n] =
1

∑

j=0

µj [n]
(

P j [n|n] + ∆x̂j [n]∆x̂
T
j [n]

)

(59)

with

∆x̂j [n] = x̂j [n|n]− x̂[n|n] (60)

Calculation of (59) is similar to that of (19), which implies

the usage of (21-25).

IV. CONCLUSIONS

In this paper an approach was presented to implementing

a complex recursive state estimation algorithm using the

BLAS library. Careful analysis of numerical properties of

mathematical formulae make allowances for selecting most

computationally effective BLAS functions.

Additionally, the following observations and ideas helped

assuring convergence and numerical stability, and reducing the

computational complexity of the filter:

1) Expressing the target movement model in sensor-

principal coordinates, which results in a linear measure-

ment model and in a diagonally-dominant covariance

matrices.

2) Applying the Cartesian line-of-sight velocity coordi-

nates, which improves numerical conditioning of the

covariance matrices.

3) C-t propagation of state and covariance, which for

a suitably chosen integration interval ensures estimator

convergence. It is not the case when the d-t EKF is

applied with such a low data rate.

4) Employing two sets of models. The more accurate one

using the geodetic Earth model for predicting the state

(28) and the simplified one using the spherical Earth

model for propagating its covariance matrix (29). This

saves a substantial computational power not affecting the

estimator convergence or accuracy.

5) Using BLAS routines dedicated to symmetric matrices,

which reduces memory storage requirements and guar-

antees symmetry of the relevant matrices.

6) Applying the Joseph’s formula (44) for propagating the

covariance matrix, which neutralises the risk imposed by

the subtraction operation in the original KF equations.

7) Calculating formulae involving sparse matrices of

known structure element-by-element.

The implemented tracking filter was observed to be nu-

merically stable during laboratory tests and when integrated

within a real radar system. Although based on computationally

expensive techniques and using a floating point representation

of numbers, the applied techniques summarised above enabled

simultaneous processing of over 100 ballistic tracks in real

time using a single-core general-purpose processor working

with the 800 [MHz] clock.
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