
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2014, VOL. 60, NO. 1, PP. 41–46

Manuscript received January 10, 2014; revised March, 2014. DOI: 10.2478/eletel-2014-0004

About Implementation of IEC 61131-3 IL Function
Blocks in Standard Microcontrollers

Mirosław Chmiel, Jan Mocha, Edward Hrynkiewicz, and Dariusz Polok

Abstract—The paper presents considerations on implementa-
tion of function blocks of the IL language, as fragments of control
programs that use these blocks. Subsequently, the predefined
function blocks of the IL language have been applied to im-
plementation in a Central Processing Unit for a programmable
controller based on standard microcontroller from such families
as MCS-51, AVR and ARM with the Cortex-M3 core. The
considerations refer to the IL language revision that is fully com-
pliant with the IEC-61131-3 standards. The completed theoretical
analysis demonstrated that the adopted method of the module
description is really reasonable and offers substantial advantages
as compared to direct calls of function modules already developed
as subroutines. Also the executed experiments have proved the
feasibility to arrange central units of programmable controllers
on the basis of standard microcontrollers and such central units
may be competitive to compact CPUs available on the market
for typical PLCs.

Keywords—Central Processing Unit, Programmable Logic
Controller, microprocessor control, microprogramming, pro-
gramming languages, language operators

I. INTRODUCTION

IN total, the IEC-61131-3 standard defines five program-

ming languages. Two of them are text languages (Instruc-

tion List – IL and Structured Text – ST) whilst three of

them are graphic ones (Ladder Diagram – LD, Function Block

Diagram – FBD and Sequential Function Chart – SFC) [1]–[3].

The IL language can be deemed as the assembler for PLCs

since in majority of programming environments any control

program developed initially in other programming languages,

both text and graphic ones, is finally converted to the form of

an instruction sequence. In addition, the program originally set

up in IL language usually runs at highest rates. These factors

served as the reasons that the CPU considered in this paper

uses the language classified to the family of the IL languages.

This paper is continuation of considerations presented in

the study [4] and presents the notation method that makes

it possible to describe complex components of the IL lan-

guage, such as counters, timers and other function blocks, by

means of simple operators of the IL language. However, it

proved necessary to use several additional operators that are

not defined by the mentioned standard. Simple instructions

of the IL language have been implemented as subroutines

in the C language available for standard microcontrollers,

which was already presented in the previous work [4]. In

subsequent works complex instructions were described in the

same way and were implemented to standard microcontrollers

too. Results from the implementation are outlined in the final

part of this study.

M. Chmiel, J. Mocha, E. Hrynkiewicz, and D. Polok are with
the Silesian University of Technology, Institute of Electronics, Gli-
wice, Poland (e-mails: {Miroslaw.Chmiel; Jan.Mocha; Edward.Hrynkiewicz;
Dariusz.Polok}@polsl.pl).

The objective of the paper is to demonstrate that a CPU exe-

cuting control program prepared according to the IEC 61131-3

standard can be also implemented with use of microcontrollers

of any generation, both older design and more recent ones.

Such a solution may prove cost-effective since more expensive

CPUs offered by manufacturers of programmable controllers

(PLCs) can be substituted with cheaper solutions based on

microcontrollers or microprocessors.

The paper is structured in the way that Section 2 outlines

basic ideas that guided development of the paper and Section

3 explains how the notation method applied to the instruction

lists affects CPU structures of programmable controllers. Sec-

tion 4 recalls some information from the IEC 61131-3 standard

and presents the basic modules that must be implemented

within CPU structures. Incorporation of large modules, i.e.

functional blocks is revealed in Section 5. Experiments carried

by authors with achieved results are described in Section 6,

whilst Section 7 comprises recapitulation of the paper and

some conclusions for future efforts.

II. BASIC IDEAS

A Central Processing Unit (CPU) of a PLC can be designed

in many ways whilst the CPU architecture is the key factor

that is crucial for execution time of a control routine. The

simplest way for implementation of a CPU is the use of a mi-

crocontroller. It can be a standard microprocessor, a dedicated

microprocessor [5] or a standard microcontroller, for instance

the CPU of the S7-200 PLC employs a microcontroller of

MCS-51 family [6]. On the other hand, CPUs are frequently

designed as multiprocessor systems that are made up of two

units operating with data of bit and word formats or they

incorporate a hardware coprocessor that assists execution of

specific types of operations [7]. Application of FPGA units

makes it possible to design dedicated microprocessor systems

that are able to efficiently execute control program on the

basis of a specialized microprocessor. Programmable devices

enable also switching over from sequential-cyclic approach to

hardware and parallel implementation within the resources of

programmable circuit [8], [9].

The methods for translation of instructions of the IL lan-

guage to the form of a subroutine executable by standard

microcontrollers are outlined in the paper [4].

For the needs of this study some popular standard micro-

controllers were investigated to make a comparison between

various solutions:

• 8052 (AT89s52) of the MCS-51 family;

• ATMega16 of the AVR family;

• STM32F103RB from STM32 with the ARM Cortex-M3.

The common architecture of the investigated CPU was

slightly modified during experiments to take account of the



42 M. CHMIEL, J. MOCHA, E. HRYNKIEWICZ, D. POLOK

same differences in internal structures of the applied micro-

controller. Translation of instructions in the IL language was

carried out in the form of program fragments and procedures

of the C language [4].

III. INFLUENCE OF THE NOTATION METHOD FOR AN IL

ONTO THE CPUSTRUCTURE

The description, how key operators of the IL language

can be implemented by means of C-language subroutines, is

presented in the study, whilst this text, as it has been already

mentioned, deals with issues that are commonly encountered

at implementation of function blocks defined according to the

IEC 61131-3 standard.

The analyze of the requirements imposed by the mentioned

standard demonstrates that individual operators allow using

only a single argument, which entails the need to assign

a dedicated memory cell to store the current result (CR) of

the operation. The mechanism for execution of individual

tasks should be construed as:

CR = CR OPERATOR OPERAND

According to the formulation of the standard the CPU

accumulator must be of universal nature, but the authors

believe that such a solution has a substantial drawback, since

it is impossible to maintain, within a single routine, a thread

associated with operation on Boolean arguments in parallel

to the operations on word-type arguments, which may occur

when various fragments of the routine can be executed option-

ally, depending whether the Boolean condition is fulfilled or

not, whilst the main body of the routine comprises arithmetical

computations. The same takes place upon the attempt to design

a combined, Bit-Byte CPU [7]. By the foregoing reason as well

as due to the fact that individual commands of the IL language

must be expanded as subroutines in the C language, the list of

operators in the IL language shall comprise pairs of operators

capable of handling those two types of arguments, e.g. LD b

for bit-type and LD W for word-type operands.

Figure 1 presents the logic structure of a CPU and explains

how internal components of a microcontroller can be applied

to implementation of the suggested central unit (CPU) for

a PLC controller with two accumulators:

• CR b0 – one-bit for execution of operations on bit type

variables;

• CR W0 – 16-bit for execution of operations on integer

type variables.

The CPU structure comprises also stacks of accumulators

that are necessary to execute operations in brackets. Due to

the reasons similar to the aforementioned ones, there are two

separate stacks and two special elements: OV – an overflow

flip-flop for arithmetic operations, and ACCT – a 32-bit

register for timer operation [4].

IV. FUNCTION MODULES DEFINED BY THE IEC 61131-3

STANDARD

The list of standard function blocks and their parameters is

shown in Tab. I.

Standard function blocks, in contrary to typical operators,

are components of sequential execution. Therefore, correct

Bit markers

Counters

Timers

CPU

CR_b0 CR_b1

CR_b2

CR_b3

CR_b4

CR_b5

CR_b6

CR_b7

CR_W0 CR_W1

CR_W2

CR_W3

CR_W4

CR_W5

CR_W6

CR_W7

OV

One bit arguments operations

Bit accumulator Bit stack

16-bit arguments operations

ACCT

16-bit accumulator 16-bit stack

Word markers

Counters

Timers

RAM

Fig. 1. Data flow in the Central Processing Unit.

TABLE I
STANDARD FUNCTION BLOCKS ACCORDING TO IEC 61131-3 [2]

Name Inputs Outputs Description

Bistable
elements
SR S1,R Q1 Set dominant
RS R,S1 Q1 Reset dominant

Edge
detections
R TRIG CLK Q Rising edge
F TRIG CLK Q Falling edge

Counters
CTU CU,R,PV Q,CV Up counter
CTD CU,LD,PV Q,CV Down counter
CTUD CU,CD,R,LD,PV QU,QD,CV Up/down counter

Timers
TP IN,PT Q,ET Pulse
TON IN,PT Q,ET On-delay
TOF IN,PT Q,ET Off-delay

execution of them in the simplest form needs a component

referred to as the status memory. However the authors, upon

analyzing statements of the standard as well as implementation

of similar functionalities within the existing PLCs [5], [10],

came to the conclusion that structuring of such functionalities

into autonomous function blocks (subroutines) rather makes

their implementation more difficult on defined hardware plat-

forms. Consequently, execution of such subroutines takes more

CPU time and, in particular in the IL language, makes more

difficult to apply them to a control program, which will be

evidenced in the further part of the manuscript.



ABOUT IMPLEMENTATION OF IEC 61131-3 IL FUNCTION BLOCKS IN STANDARD MICROCONTROLLERS 43

A. Bistable Elements (Flip-Flops)

When it comes to the IL language, the required sequence

of commands should be made up in the following way:

SR:

Q1 := S1 or (not R and Q1)

RS:

Q1 := not R1 and (S or Q1)

Please notice that execution of the functions for each of

these components is reduced to setting up a simple routine

that will look like in the following way in the IL language:

LD_b S1 ;S1 -> CR_b0

PUSH_b ;CR_b0 -> CR_b1

LDN_b R ;not R -> CR_b0

AND_b Q1 ;CR_b0 OR Q1 -> CR_b0

OR() ;CR_b1 OR CR_b0 -> CR_b0

ST_b Q1 ;CR_b0 -> Q1

However, the IL language comprises also operators that

enable execution of the foregoing fragment in another way:

LD_b R ;R -> CR_b0

R Q1 ;Reset Q1 if CR_b0=1

LD_b S1 ;S1 -> CR_b0

S Q1 ;Set Q1 if CR_b0=1

It is the way that makes the notation even simpler and leads

to savings on the execution time [11]. Please also pay attention

that the second implementation of the flip-flop function is

irrelevant to the preceding state and the current state will

depend only on the input state.

B. Edge Detections

The mentioned standard defines two function blocks with

the aim to enable detection of such situation in the control

routine when a binary variable switch to the opposite state.

The R TRIG function evaluates the CLK signal and produces

a “1” at the Q output when there is a rising edge (0 to 1

transition). This operation uses an internal edge detection

flag – MEM – that stores the “previous” (from the previous

call/execute of the R TRIG operation) value of CLK in order

to compare the current value against the flag and carry on

operation with the current value. F TRIG function detects the

falling edge of CLK signal. The ST language representation

of the positive edge detection operation is presented below:

R TRIG:

Q := CLK and not MEM

MEM := CLK

F TRIG:

Q := not CLK and not MEM

MEM := not CLK

Execution of the foregoing routines needs no additional

operators and they can be noted with use of basic operators

from the IL language, which is demonstrated on the example

of the R TRIG function:

LD_b CLK ;CLK-> CR_b0

ANDN_b MEM ;CR_b0 AND not MEM -> CR_b0

ST_b Q ;CR_b0 -> Q

LD_b CLK ;CLK -> CR_b0

ST_b MEM ;CR_b0 -> MEM

However, there is no obstruction to create a new operator

that shall use an element of the controller memory, for instance

a marker, as its argument. In such a case the routine in the IL

language will look like as follows:

LD_b CLK ;CLK -> CR_b0, CR_b0’

R_TRIG MEM ;CR_b0 AND not MEM -> CR_b0

;CR_b0’ -> MEM

ST_b Q ;CR_b0 -> Q

It is the method that needs a variable that stores, for the

time of the routine execution, the current state of the bit

accumulator – CR b0. This requirement can be accomplished

in many ways, for instance after each operation with LD b

(actually after each operation when the operation results is

moved to CR b) the variable value is stored in two memory

cells – to the bit accumulator CR b0 and to a memory cell

CR b0’ that mirrors the bit accumulator, however, these cells

are not involved in execution of the instructions in question.

Upon detection of an edge it is sufficient to store the content of

that cell into the MEM cell. Use if the foregoing mechanism

leads merely to the situation that operators for edge detection

execute two functions as explained above. On the other hand,

below is the problem solution that needs no modification to

execution of the LD b instruction.

LD_b CLK ;CLK -> CR_b0

R_TRIG MEM ;CR_b0 -> CR_b0’

;CR_b0 AND not MEM -> CR_b0

;CR_b0’ -> MEM

ST_b Q ;CR_b0 -> Q

Please note that the two last solutions for the problem of

edge detection do not need to have the last command executed

at all since the fact of edge detection is most frequently used

in the routine immediately downstream the location where the

edge is detected. For the foregoing examples the information

about edge detection is stored in the CR b0 bit-accumulator.

C. Counters

The statements of the referred standard define three types

of counters (for simplification the counters shall be described

in the way that refers to imaging of the counters in one of

graphic languages):

• CTU – the counter that counts up pulses supplied to the

CU (Count Up) input that is sensitive to rising edge. The

counter has the R (Reset) input that enables clearing of

the counter content to zero as well as the register PV

(Preset Value). If the current content of the counter equals

to the value at the PV input the binary output Q adopts

the active status (1);

• CTD – the counter that counts down pulses supplied to

the CD (Count Down) input that is sensitive to rising



44 M. CHMIEL, J. MOCHA, E. HRYNKIEWICZ, D. POLOK

edge. The counter has the LD (Load) input that enables

loading of values from the PV inputs to the CV cell.

When current content of the counter comes to zero (0),

the binary output Q adopts the active status (1);

• CTUD – the counter that is able to count in two directions

and has functionalities as well as inputs and outputs of

the both counters described above.

Specification of the CTUD function module in the ST

language is showed below:

FUNCTION_BLOCK CTUD

VAR_INPUT

CU : BOOL R_EDGE;

CD : BOOL R_EDGE;

R : BOOL;

LD : BOOL;

PV : INT;

END_VAR

VAR_OUTPUT

QU : BOOL;

QD : BOOL;

CV : INT;

END_VAR

IF R THEN

CV := 0;

ELSIF LD THEN

CV := PV;

ELSE

IF not(CU and CD) THEN

IF CU and (CV<PV) THEN

CV := CV + 1;

ELSIF CD and (CV>0) THEN

CV := CV - 1;

ENDIF;

ENDIF;

ENDIF;

QU := (CV >= PV);

QD := (CV <= 0);

END_FUNCTION_BLOCK

Implementation of counter functions is much more sophis-

ticated as compared to the two remaining groups of function

blocks. As one can see above, it is necessary to increment

and /or decrement content of the memory cell as well as to

determine status of a binary output on the basis of the current

content of the counter, i.e. the memory cell. But on the other

hand, each of the mentioned functionalities is already imple-

mented for basic operators – addition, subtraction, comparison,

not to mention about loading content of a memory cell and

transferring both binary and numerical information. Such a set

of instruction combined with the ability to use jumps within

the routine makes it possible to execute all counter functions

with no need to implement additional operators. However, such

a solution seems to be inefficient and it is better to define

supplementary operators that enable conditional incrementing

and decrementing functions.

Implementation of a counter needs mapping of a suitable

data structure in the controller memory to enable storage of

the current content of the counter as well as status of the

PV input and the status of QU and QD outputs. Two more

memory cells are necessary as well to store previous statuses

PV – Preset Value

CV – Current Value

QU

QD

Output bit – CV>=PV

Output bit – CV<=PV

R

LD

Reset

Load

CU

CD

Count Up

Count Down

Fig. 2. Minimum representation of a counter structure.

of the CU and CD inputs. The example structure for a single

counter unit is shown in Fig. 2. The routine that corresponds to

functionalities of the CTUD counter noted in the IL language

may look as follows:

LD_b IN_CU ;IN_CU -> CR_b0

CU Counter ;Counter.CV++ if CR_b0

;changed from 0 to 1

LD_b IN_CD ;IN_CU -> CR_b0

CD Counter ;Counter.CV-- if CR_b0

;changed from 0 to 1

LD_b IN_RES ;IN_RES -> CR_b0

RC Counter ;0 -> Counter if CR_b0=1

LD_W IN_PV ;IN_PV -> CR_W0

ST_W Counter.PV ;CR_W0 -> Counter.PV

LD_b IN_SET ;IN_SET -> CR_b0

SC Counter ;Counter.PV -> Counter.CV

;if CR_b0=1

LD_b Counter.QU ;Counter.QU -> CR_b0

ST_b OUT_MAX ;CR_b0 -> OUT_MAX

LD_b Counter.QD ;Counter.QD -> CR_b0

ST_b OUT_MIN ;CR_b0 -> OUT_MIN

LD_W Counter.CV ;Counter.CV -> CR_W0

ST_W C_Value ;CR_W0 -> C_Value

The SC instruction highlighted in bold is not covered by

standard, although it seems indispensable for the IL language

to successfully resolve the problem of counters. Obviously,

one can image that the instruction may have a mnemonic

similar to all commands from the STORE (ST) group, but the

functionality of the command would be totally different since

it should be executed only when the condition is fulfilled.

Similarly, one more instruction RC should be defined for

clearing (reset) of the counter structure when high (1) signal

is supplied to the R input.

D. Timers

The mentioned standard defines timers by means of timing

waveforms [3]. There are three types of timers described:

• TP – Pulse Timer – acts as a pulse generator which

provides a pulse of constant length at the Q output upon

a rising edge is detected at the IN input;

• TON – On-Delay Timer – transfers the input value of IN

to the Q output with a time delay upon a rising edge is

detected at IN.;

• TOF – Off-Delay Timer – delays a falling edge in the

same way as TON does it for a rising one.



ABOUT IMPLEMENTATION OF IEC 61131-3 IL FUNCTION BLOCKS IN STANDARD MICROCONTROLLERS 45

PT – Preset Time

ET – Elapsed Time

Q Depend on timer type

IN Control Input

Fig. 3. Minimum representation of a timer structure.

It is impossible to specify how the timers should be imple-

mented within the function blocks that execute the functional-

ities of waveform generators, thus these functions are usually

defined only as timing diagrams. The standard imposes no so-

lution for implementation of timers and manufacturers are very

scarce in disclosing their ideas in available documentation. The

solution for the timer functions not only needs implementation

of the device operation by means of programming languages

but also the method itself that is applied to count the elapsing

time [4]. The example below and Fig. 3 explain how the code

of the function for the TP timer can be defined in the IL:

LD_W Time ;Time -> CR_W0

ST_W Timer.PT ;CR_W0 -> Timer.PT

LD_b IN_START ;IN_START -> CR_b0

TP Timer ;Timer controlling

;depends on timer type,

;Timer.PT and CR_b0

LD_b Timer.Q ;Timer.Q -> CR_b0

ST_b OUTPUT ;CR_b0 -> OUTPUT

LD_b Timer.ET ;Timer.ET -> CR_W0

ST_b T_Value ;CR_W0 -> T_Value

E. Summary

The foregoing examples show that bistable elements and

components for edge detection correspond to rather simple

functions that employ only binary components of the central

unit. The foregoing description and referred examples clearly

show that such elements can be implemented in the way that

is purely free of software structures referred to as function

blocks. Other function blocks can be implemented in a similar

way, but it needs to define a group of new operators that shall

be assigned to specific operations on data structures already

mapped on the CPU memory.

V. FUNCTION BLOCKS CALLS

The standard provides three methods for calls of function

blocks in the IL language. All these three call procedures

are explained on the example of the call for the timer func-

tion module, where the timer type must be specified in the

declaration part of the program. The calls themselves fail to

distinguish the type of the timer denoted as Time:

1) Using a call including a list of actual input and output

parameters provided in brackets:

CAL Time (IN:=st,PT:=t#1s,Q=>out,ET=>val)

2) Loading and saving input parameters into structures of

module cells, calling the module and reading output cells

into output parameters:

LD t#1s ;inputs saving

ST Time.PT

LD st

ST Time.IN

CAL Time ;block calling

LD Time.Q ;outputs reading

ST out

LD Time.ET

ST val

3) Calling “implicite” by using the input parameters as

operators:

LD t#1s

PT Time ;input saving

LD st

IN Time ;timer calling

LD Time.Q ;outputs reading

ST out

LD Time.ET

ST val

The call with use of the third method differs in such way that

the CAL instruction is removed and its role is taken over by

the operator that assumed the name of the timer input (memory

cell), according to the rule for that method. Consequently, the

IN operator appeared. However, the authors are in position that

it is an abortive idea and it is more reasonable to simply set

up three new operators for timers, namely TON, TP and TOF,

instead of determining the timer type when all units of function

blocks are being declared. These new functions shall be used

as operators necessary to call functionality of a specific timer.

The authors believe that the only reasonable method for

calling function blocks defined in the IL language is the third

solution since the two remaining methods shall always need

more time to execute such a routine. It results from the fact

that each execution of the CAL operator entails processing the

entire structure of the function blocks, regardless whether all

parameters of the block are in use or not as well as in spite

of the fact that the status /value of these parameters subject to

changes. or not.

VI. RESULTS OF EXPERIMENTS

Table II summarizes execution times for all the operators

that are used for execution of routines that correspond to

the functions implemented for CPUs within three microcon-

trollers:

• The MCS-51 microcontroller series was synchronized

with the clock frequency of 16MHz and the scan time

(necessary to execute 700 instructions on binary variables

and 300 instructions on word-type variables) is 10ms

[12];

• The AVR microcontroller clocked with 16MHz frequency

with the scan time equal to 1.88ms [13];

• The ARM microcontroller with 72MHz clock frequency

and 1.05ms scan time [14].

The table comprises the execution times for these commands

against the times of the S7-224 [5] and S7-312 [10] CPUs

offered by Siemens manufacturer.



46 M. CHMIEL, J. MOCHA, E. HRYNKIEWICZ, D. POLOK

TABLE II
EXECUTION TIMES FOR OPERATORS EQUIVALENT TO FUNCTION BLOCKS

(IN µS)

Operator MCS51 AVR ARM S7-224 S7-312

LD b 3,00 0,25 0,06 0,80 0,10
ST b 9,00 0,25 0,08 1,30 0,14
S 9,75 0,31 0,19 2,90 0,14
R 9,75 0,31 0,19 2,90 0,14
R TRIG 43,50 0,69 0,47 8,00 0,26
F TRIG 27,00 0,69 0,47 8,00 0,26
LD W 3,00 0,50 0,06

18,00
0,28

ST W 12,00 4,69 0,10 0,28
CU 62,25 5,44 0,80 31,00 1,22
CD 62,25 5,13 0,83 27,00 1,31
RC 47,75 2,88 0,63 9,30 1,15
RT 47,65 2,88 0,63 16,00 1,51
SC 47,25 3,13 0,63 - 1,76
TP 40,50 2,56 0,56 - 1,20 – SP
TON 28,50 1,38 0,64 33,00 1,31 – SD
TOF 30,00 2,00 0,78 36,00 1,37 – SF

VII. CONCLUSIONS

To summarize the result it is necessary to emphasize that the

attempt to design cores for CPUs of a programmable controller

was successful and the controllers were fully operable and

capable of executing all function blocks in accordance with the

IEC-61131 standard. However, as it has been demonstrated for

the newly developed CPUs, the solutions benefit from calls of

function blocks, without direct implementation of them within

the C language, but by means of suitable operators of the IL

language that are executed upon the calls.
The authors are in position that function blocks may have

some raison d’être for graphic languages or for the ST

language, i.e. the languages with a clear structure. However, if

such a strict structure is not desired, for instance in case of the

IL language, there is no sense to use such a structure of calls.

It is enough to map necessary data structures onto the CPU

memory and supplement the list of commands with suitable

additional operators that are capable of executing necessary

operations on these structures. Not only it is the best solution

from the viewpoint of a design engineer for the central unit

but it also offers a lot of freedom for a programmer. Instead

of limiting the programmer to simple use of function blocks

only by calling them en block, it offers, with no restrictions,

the possibility to incorporate any fragments of the module

functionalities into any place of the control routine.
In addition, the study comprises comparison between ex-

ecution times for components of the IL language that cor-

respond to calls of function blocks within the structures of

typical microcontrollers. The CPU designed on the basis of

a microcontroller with the ARM core could execute the control

routine faster than commercially available CPUs.
In spite of the fact that microcontrollers of the MCS51 are

deemed as an “obsolete” design they are subject to continuous

improvements that have led, for instance, to the solution

engineered and being offered by Digital Core Design (DCD)

under the name of DQ80251. Simplicity, high efficiency and

great performance – these three features make the 8051

microcontrollers still very popular. Using everywhere 32-bit,

heavy RISC processor is pointless, when an 8-bit CPU can

do the tasks more economically and eco-friendly, due to much
lower power and ASIC area consumption. Digital Core Design

portfolio includes the most powerful DQ80251 architecture,

which is 66 times faster than the 80C51 and has 50%

more efficient code space utilization, comparing to the classic

8051. Digital Core Design has a complete portfolio of 8051

processors, consisting of: very small and effective DT8051

family, most popular high performance DP8051 family and

nowadays, the newest DQ80251 version of the most power-

ful 8051 in the world, which avails faster architecture and

smaller ASIC area, than any other competitors’ 8051 solution.

Each family is embedded with the DoCD JTAG/TTAG real-

time, non-intrusive debugging system. All in all, successful

implementation of CPUs compatible with requirements of the

standard may lead to a solution that would be really powerful

comparable even with ARM microprocessor with substantial

savings on hardware [15].

Further studies shall be focused on comparison between

various methods for implementation of function blocks and

calling them for execution. Results from such comparisons

shall be disclosed in further studies with specification of the

best implementation method.

REFERENCES

[1] F. Bonfati, P. D. Monari, and U. Sampieri, IEC 61131-3 Programming
Methodology; Software engineering methods for industrial automated
systems. ICS Triplex ISaGRAF, 2003.

[2] J. A. Rehg and G. J. Sartori, Programmable Controllers. Prentice Hall,
2007.

[3] K. H. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial
Automation Systems. Berlin Heidelberg: Springer-Verlag, 2010.

[4] M. Chmiel, J. Mocha, E. Hrynkiewicz, and D. Polok, “About imple-
mentation of IEC 61131-3 IL operators in standard microcontrollers,” in
Proceedings of 12th IFAC/IEEE International Conference on PDeS’13,
Velke Karlovice, Czech Republic, September 25-27 2013, pp. 30–35.

[5] K. Koo, G. S. Rho, W. H. Kwon, J. Park, and N. Chang, “Architectural
Design of an RISC Processor for Programmable Logic Controllers,”
Journal of Systems Architecture, vol. 44, no. 5, pp. 311–325, February
1998.

[6] M. S. Boggs, T. L. Fulton, S. Hausman, G. McNabb, A. McNutt, and
S. W. Stimmel, “Programmable Logic Controller – Method, System and
Apparatus,” June 3 2003, US Patent No. US 6,574,743 B1.

[7] M. Chmiel, J. Mocha, E. Hrynkiewicz, and A. Milik, “Central Processing
Units for PLC implementation in Virtex-4 FPGA,” in Proceedings of the
18th IFAC World Congress, Milano, Italy, August 28-September 2 2011,
pp. 7860–7865, vol. 18, part 1.

[8] A. Milik, “High Level Synthesis – Reconfigurable Hardware Implemen-
tation of Programmable Logic Controller,” in PDeS’06, Brno, February
14-16 2006, pp. 138–143.

[9] J. Mocha and D. Kania, “Hardware Implementation of a Control
Program in FPGA Structures,” Electrical Review, vol. 88, no. 12/2012,
pp. 95–100, 2012, (in Polish).

[10] H. Berger, Automatic with STEP7 in STL and SCL – SIMATIC S7-
300/400 Programmable Controllers. Germany: Siemens AG, 2001.

[11] J. Kulisz, M. Chmiel, and A. Malcher, “Generating time intervals in
Programmable Logic Controllers,” in Proceedings of 12th IFAC/IEEE
International Conference on PDeS’13, Velke Karlovice, Czech Republic,
September 25-27 2013, pp. 42–47.

[12] T. Białas, “The compact controller based on ’51 microcontroller, master
thesis,,” Master’s thesis, Silesian University of Technology, Gliwice,
2012, (in Polish).

[13] R. Zych, “The compact controller based on AVR microcontroller,”
Master’s thesis, Silesian University of Technology, Gliwice, 2012, (in
Polish).

[14] M. Juraszek, “The compact controller based on ARM microcontroller,”
Master’s thesis, Silesian University of Technology, Gliwice, 2012, (in
Polish).

[15] DCD, “DQ80251 – Revolutionary Quad-Pipelined Ultra High Perfor-
mance 16/32-bit Configurable Microcontroller,” 2013.


