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Abstract—The article presents a hardware implementation of
the foreground object detection algorithm PBAS (Pixel-Based
Adaptive Segmenter) with a scene analysis module. A mechanism
for static object detection is proposed, which is based on consecu-
tive frame differencing. The method allows to distinguish stopped
foreground objects (e.g. a car at the intersection, abandoned lug-
gage) from false detections (so-called ghosts) using edge similarity.
The improved algorithm was compared with the original version
on popular test sequences from the changedetection.net

dataset. The obtained results indicate that the proposed approach
allows to improve the performance of the method for sequences
with the stopped objects. The algorithm has been implemented
and successfully verified on a hardware platform with Virtex
7 FPGA device. The PBAS segmentation, consecutive frame
differencing, Sobel edge detection and advanced one-pass con-
nected component analysis modules were designed. The system
is capable of processing 50 frames with a resolution of 720 × 576
pixels per second.
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I. INTRODUCTION

ROBUST foreground object detection and background

generation are important components of many real

world image processing and analysis systems. Good examples

are: automated advanced video surveillance systems, video

based remote patient monitoring, video traffic monitoring,

autonomous guided vehicles or semantic image analysis.

The purpose of foreground object segmentation is to assign

every pixel in the image into two categories: background or

foreground, where by foreground are meant objects which

are interesting for a given system, usually people or cars. It

should be noted that this is not a simple moving or static

classification. For example, a person or a car may stop for

a period of time and yet should still be detected. On the

other hand, one can indicate a number of situations, where

the background elements are also moving. These are flowing

water, fountains, moving leaves or branches. Unfortunately,

they are usually detected as foreground objects by the basic

segmentation methods. The elimination of this type of false

detections is one of the tasks for the algorithm designer.
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Another challenge are virtual objects (referred to in the

literature as “ghost”), which are false detections present on

the object mask – they do not correspond to any real objects

on the current scene. They arise in two cases: when an initially

stationary object begins to move (e.g. a car will leave a parking

space) or when an object, that was static for some time and was

introduced into the background model, starts moving again.

The greatest difficulty is to distinguish ghosts from “real”

stopped objects, because they have very similar properties. In

both cases there is a significant difference between the current

frame and the background model and also the object remains

stationary.

Shadows cast by foreground object are a further difficulty.

On the one hand, they have all the features of an object

(they differ from the background and move), but usually they

should be regarded a distortion, as they significantly influence

the foreground mask’s shape. For example they can lead to

“joining” two distant objects. It is also difficult to consider

this type of shadows as part of the background. Therefore,

it seems necessary to treat them as a separate category, in

addition to the foreground and background. Furthermore, the

used background model should adapt to the current lighting

conditions and be somewhat resistant to the effects of camera

jitter (vibrations) and unfavourable meteorological conditions

(fog, snow, rain etc.).

The examples mentioned above show that the considered

problem is quite complex and constant research in the field

of background generation and foreground object segmentation

is still needed. In the literature many methods are described.

From most basic ones, based on computing the running

average or mean/median from N last buffered frames, to more

complex, so called multi-variant: GMM (Gaussian Mixture

Models), Clustering, Codebook or eigenbackground based.

Comprehensive surveys can be found in [1], [2] and [3].

In this paper we address the problem of proper handling of

stopped objects and ghosts. The integration of the foreground

object mask obtained by the PBAS (Pixel-Based Adaptive

Segmenter) method [4] and movement mask determined using

consecutive frame differencing combined with the analysis of

stationarity and edge similarity is presented. The proposed

system was realised in a FPGA device, which is a proven

platform for hardware implementation of image processing

and analysis algorithms [5]. The use of fine grain parallelism

available on the hardware platform allowed to implement the

PBAS, consecutive frame differencing, Sobel edge detection,

median filtering and an advanced one-pass connected compo-

nent analysis algorithms and create a real-time vision system



62 T. KRYJAK, M. KOMORKIEWICZ, M. GORGON

able to process 50 frames with resolution 720×576 pixels per

second.

The main contributions of the paper are threefold:

• an improvement of the PBAS algorithm that allows to

distinguish stopped objects from ghosts, which improves

the foreground object detection results,

• hardware implementation of an advanced video process-

ing system in a low power FPGA device,

• verification of the proposed architecture on an evalua-

tion board with connected HDMI camera on real life

sequences.

In Section II the PBAS method, which is an essential

component of the solution, is described. Its hardware imple-

mentation was previously reported in the work [6]. Section

III depicts the evaluation methodology of foreground object

segmentation algorithms, as well as the obtained results. They

were the basis for the proposed modifications i.e. using motion

detection and object analysis, which are presented in Section

IV. Issues related to hardware implementation are discussed in

Section V. First, a survey of background modelling algorithms

implemented in hardware is presented – Subsection V-A. Then,

in Subsection V-B the realised system is described and the

essential modules: PBAS algorithm (Subsection V-C) and one-

pass connected components analysis (Subsection V-D) are

discussed in details. The system integration on an evaluation

board with FPGA device, as well as resource utilization,

energy consumption and computing performance are presented

in Subsection V-E. The article ends with a summary and

discussion of the possible directions of further development.

II. THE PBAS ALGORITHM

The background model in the PBAS [4] is based on a buffer

of N samples from the analysed video sequence. Let xi denote

a particular pixel. The foreground/background classification is

made on the basis of comparing the model B(xi) with the

current frame I(xi). For each pixel a unique decision threshold

is used R(xi). The update is performed for random samples

with a probability specified by the parameter T (xi). Both

R(xi), T (xi) are adjusted separately for each pixel, which

distinguishes PBAS from other methods. In the following

section the algorithm is described in detail.

A. Segmentation

In PBAS, similarly to other foreground segmentation al-

gorithms, the foreground/background classification is based

on comparison of the model with the current pixel. In the

discussed method, the background model is defined as an array

of N recently observed pixel values:

B(xi) = {B1(xi), . . . , Bk(xi), . . . , BN(xi)} (1)

A pixel xi belongs to the background when the distances

between the current value I(xi) and at least #min samples

from the background model are smaller than the threshold

R(xi). Therefore the object mask is calculated as:

F (xi) =















1 if
∑N

k=0{dist(I(xi), Bk(xi))
< R(xi)} < #min

0 else
(2)

where: F = 1 denotes foreground, F = 0 background and

dist is a distance measure:

dist(I(xi), Bk(xi)) = |I(xi)−Bk(xi)| (3)

B. Background Model Update

The background model update is necessary to compensate

for slight changes in lighting (e.g. time of the day), as

well as some inevitable changes in the scene (motion in the

background – moving trees, flowing water and the appearance

and disappearance of objects – e.g. cars in the parking lot).

In a background generation methods one can distinguish

two update polices: liberal and conservative. In the first case,

all pixels are updated, in the second only those classified as

background. Both approaches have certain unique properties.

The main disadvantage of the liberal policy is a relatively rapid

inclusion of foreground objects into the background model,

which leads to segmentation errors (i.e. false negative errors

at first and then possibly “ghosts”). In particular this applies

to objects that move very slow. The conservative method

avoids the phenomenon described above, however, has one

major drawback. The use of the foreground object mask as

an update condition leads to “deadlocks” caused, both by

minor segmentation errors and motion of objects, which were

initially static. Furthermore, once present an error will never

be eliminated. For this reason some mechanisms to prevent

such cases are designed. One possible solution is counting

the number of times a pixel is classified as an object. When

the counter value exceeds a threshold, an update is forced.

In PBAS a conservative policy with an additional mechanism

for updating the neighbouring pixels, which prevents from

irreparable segmentation errors, is used.

Only pixel classified as background may be updated

(F (x) = 0). The actualisation is based on replacing a ran-

domly selected sample from the background model (Bk(xi))
with the current pixel value (I(xi)). The probability of an

update is given as p = 1/T (xi). Similarly, a randomly selected

sample, from a randomly selected model, from a 3 × 3 local

context is replaced by the current value I(yi), where yi denotes

a pixel from the context.

C. Update of the Decision Threshold R(xi)

In PBAS the following update mechanism for the R(xi)
value is proposed. Primary, the minimum distances between

samples from the model, and current pixel are defined: D =
{D1(xi), . . . , DN(xi)}. If a pixel is updated the minimal

distance:

dmin(xi) = minkdist(dist(I(xi), Bk(xi))) (4)

is saved as Dk(xi) = dmin(xi). The mean value of D(xi),
refereed to as d̄min(xi), is a measure of background dynamics

and is used in the R(xi) update:
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R(xi) =

{

R(xi)(1 −Rinc/dec) if R(xi) > d̄min(xi)Rsc

R(xi)(1 +Rinc/dec) else
(5)

where: Rinc/dec – constant update rate = 0.05 1, Rsc – scaling

factor = 5. Additionally the decision threshold was limited by

a lower bound Rlower = 18.

D. Update of the Learning Rate T (xi)

The learning rate update procedure is described as:

T (xi) =

{

T (xi) +
Tinc

d̄min(xi)
if F (xi) = 1

T (xi)−
Tdec

d̄min(xi)
if F (xi) = 0

(6)

where: Tinc = 1 and Tdec = 0.05 – update rates. Additionally

the learning rate is limited by a lower bound Tlower = 2 and

upper bound Tupper = 200. Details on the update mechanism

are described in [4].

E. Additional Information

In practice, video sequences are in the RGB colour space.

The authors of the paper [4] therefore proposed to process each

colour component separately and to combine the resulting seg-

mentation masks with the OR operator (i.e. F (xi) = FR(xi)

OR FG(xi) OR FB(xi)). As a post-processing operator me-

dian filtering with a window size of 9×9 pixels was proposed.

In the original algorithm, the background model was supple-

mented with information about the edges (using Sobel gradient

magnitudes). However, analysing the results described in [4]

lead to the conclusion that the addition of edges allowed

only for slight improvement in segmentation, but increased the

size of the background model and complicated the calculation

of distances between the current pixel and the background

model. Therefore, in the described hardware implementation

this mechanism is not used.

III. EVALUATION OF THE PBAS ALGORITHM

This section presents the evaluation methodology of fore-

ground object segmentation algorithms, as well as the used

test database. Furthermore, results of the basic PBAS method

are discussed in details.

A. Evaluation Methodology and Test Sequences

The most common method of assessing the effectiveness

of foreground object segmentation algorithms is to compare

the obtained mask with a reference one (created by manual

annotation) at single pixel level. One popular test datasets

is the IEEE Workshop on Change Detection database [7] –

changedetection.net. The dataset contains sequences

divided into six categories (2012 version): basic, dynamic

background (e.g. flowing river), camera jitter, intermittent

object motion, shadows and thermal images. In each of them

4 to 6 videos are included. It can be noticed that the database

contains sequences which cover a large part of the situations

that are problematic to background generation algorithms.

1default values of all algorithm parameters were proposed in the paper [4]

a) b) c)

d) e) f)

Fig. 1. Sample images and ground truths for sequences: a – baseline/office,
b – cameraJitter/traffic, c – dynamicBackground/overpass, d – intermittentO-
bjectMotion/winterDrive, e – shadow/backdoor, f – thermal/diningRoom.

However, the main advantage of the database, and what

distinguishes it from other collections (e.g. Wallflower [8]),

is a large number of manually annotated reference frames

with areas marked as: background, shadow, movement, slight

blurring and foreground. This allows for a reliable assessment

of the algorithms performance in different situations. Sample

images and ground truths are presented in Fig. 1.

The methodology used in the experiments can be described

as follows. The object mask computed by the algorithm is

compared with the reference mask. In this research only the

foreground and background classification was considered, as

no shadow detection procedure was implemented. The rates

listed below were calculated:

• TP (true positive) – pixel belonging to a foreground object

classified as a pixel belonging to the foreground,

• TN (true negative) – pixel belonging to the background

classified as a background pixel,

• FP (false positive) – pixel belonging to the background

classified as a pixel belonging to the foreground,

• FN (false negative) – pixel belonging to a foreground

object classified as a background pixel.

Then, based on the calculated parameters the following mea-

sures were determined:

• Recall = TP / (TP + FN),

• Specificity = TN / (TN + FP),

• FPR (False Positive Rate) = FP / (FP + TN),

• FNR (False Negative Rate) = FN / (TP + FN),

• PWC (Percentage of Wrong Classifications) = 100 × (FN

+ FP) / (TP + FN + FP + TN),

• F1 = (2 × Precision × Recall) / (Precision + Recall)

• Precision = TP / (TP + FP).
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B. Results of the PBAS Method

Table I summarizes the results obtained for the following

algorithms: hardware implementation of the PBAS method

(PBAS FPGA) prosed in the work [6], the original PBAS

method described in the article [4], the frequently used Gaus-

sian Mixture Models (GMM) method [9] (the implementation

available in the OpenCV library [10]) and Spectral-360, which

is the best algorithm in the changedetection.net com-

parison (version 2012).

Analysis of the results leads to the following conclusions.

The Recall, Specificity and FNR are quite similar for methods

PBAS and Spectral-360. The PBAS FPGA hardware imple-

mentation has a slightly higher false positive rate (FPR). The

percent of wrong classification value (PWC) for the FPGA

version of PBAS is higher than for the original software

version and Spectral-360 method, but similar to GMM. This

is the result of a higher false positive rate, which is confirmed

by the F1 and Precision values. The differences between the

hardware and software version result from: lower number of

samples in background model (NFPGA = 19, NSOFT = 35)

and fixed point calculations (particularly the R(xi) and T (xi)
rates).

In the next stage of the research the cause of errors for test

sequences were examined. Table II summarizes the average

parameter values in the individual categories obtained by

the PBAS FPGA method. For the Baseline set the results

were relatively correct. In the case of sequences containing

camera jitter (Camera Jitter) characteristic is the low value

of Precision and F1. This is due to a significant number of

false detections caused by camera movement. Their reduction

would be possible through the use of vibration compensation

mechanism based on camera movement estimation between

consecutive frames (e.g. using optical flow).

Another difficult case is the presence of motion in the

background (Dynamic Background). It is worth to distinguish

between the two situations. In one, the movement is present

in a location where there are no foreground objects or they

appear only temporarily. An example is presented in Fig. 2a.

There, the objects appear on the road behind the fountain,

in front of the building. In the second, the objects occur

at the same location as the moving background – a good

example is a boat on the water (Fig. 2b). In the first of the

cases, a fairly good solution seems to be the exclusion of the

problematic areas from analysis. This can be done manually,

for example by defining masks on the setup/configuration stage

or automatically, using the motion history image (MHI) or

blinking pixels detection mechanism described in papers [11]

and [12]. A similar approach in other situations usually results

in omitting large parts of foreground objects.

The correct segmentation of stopped foreground objects, as

well as ghost elimination is tested on the Intermittent Object

Motion set. In this case, the major difficulty is to propose

a solution, which on the one hand will not cause the intrusion

of static objects from the foreground to the background

model (e.g. a person standing at a pedestrian crossing or

an abandoned luggage) and on the other hand will tend to

eliminate detections of “empty space” or “ghosts” (e.g. when

a parked car left a parking place). The PBAS FPGA method

a) b)

c) d)

Fig. 2. Difficult sequences from the changedetection.net dataset: (a)
fountain, (b) river, (c) and (d) thermal image without and with foreground
object respectively.

achieved for these sequences rather average results, because

the algorithm uses a conservative update approach combined

with diffusion of samples to neighbouring background models

(compare Section II-B). This results in a slowly intrusion into

the background model both ghosts and foreground objects.

The results for the Shadows set should be considered quite

decent. It is worth remembering that the PBAS algorithm does

not include a mechanism to detect and eliminate shadows. Its

implementation could improve the effectiveness of the method.

For the Thermal category the results are also quite good. In

this case, the main problem is the poor contrast between the

objects and the background. Therefore some objects are not

detected at all. It is particularly well illustrated by the sequence

Lake Side – compare Fig. 2c, where the scene is empty and

Fig. 2d with a foreground object.

IV. IMPROVEMENT OF THE PBAS ALGORITHM

Based on the analysis described in Section III-B it was de-

cided to focus on the problem associated with the Intermittent

Object Motion dataset because of its significance for video

surveillance systems, especially those whose main application

is abandoned objects detection. It was pre-assumed that the

algorithm should be able to work in a streaming video system

realized on a platform with an FPGA device. This excluded

a number of solutions, which implementation in hardware is

difficult or even impossible – for example, segmentation by

division or region growing (i.e. recursive approach).

The proposed solution is based on two observations:

• both the stopped foreground object and the ghost are

static, i.e. not motion should be detected for a longer

period of time at this area,

• the stopped object differs from the ghost in that the object

“exists” in the current frame and the ghost does not.

In order to determine whether the object is static, a mech-

anism based on subtraction of two consecutive frames was
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TABLE I
RESULTS OF PBAS AND OTHER STATE-OF-THE-ART METHODS

Method Recall Specificity FPR FNR PWC F1 Precision

PBAS FPGA (N=19, RGB) – our FPGA 0.7977 0.9720 0.0280 0.2023 3.4353 0.6813 0.6994

PBAS (N=35, RGB) reported in [4] 0.7840 0.9898 0.0102 0.2160 2 1.7693 0.7532 0.8160

GMM (included in OpenCV) 3 0.6964 0.9845 0.0155 0.3036 3.1504 0.6596 0.7079

Spectral-360 4 0.7770 0.9920 0.0080 0.2230 0.8516 0.7770 0.8461

2 result reported for the PBAS method at changedetection.net
3 results from the changedetection.net website
4 results from the changedetection.net website

TABLE II
RESULTS OF PBAS FPGA METHOD ON DIFFERENT CATEGORIES FROM THE CHANGEDETECTION.NET DATASET

Category Recall Specificity FPR FNR PWC F1 Precision

Baseline 0.9259 0.9968 0.0032 0.0741 0.5588 0.9179 0.9104

Camera Jitter 0.8566 0.9338 0.0662 0.1434 6.8527 0.5284 0.3897

Dynamic Background 0.8708 0.9859 0.0141 0.1292 1.5243 0.6674 0.6728

Intermittent Object Motion 0.6046 0.9356 0.0644 0.3954 7.9660 0.4893 0.5884

Shadows 0.9163 0.9848 0.0152 0.0837 1.7977 0.8016 0.7327

Thermal 0.6499 0.9945 0.0055 0.3501 1.8239 0.7173 0.9037

used. The difference in the RGB colour space is described by

the formula:

dF (xi) =
∑

C∈{R,G,B}

|I(xi)
C
K − I(xi)

C
K−1| (7)

where: I(xi)
C
K denotes a colour component C ∈ {R,G,B}

for frame K .

As a stability measure the ratio of pixel number, for which

the calculated dF (xi) value (Equation (7)) exceeds a given

threshold θ to the object area was used:

SOk =

∑

xi∈Ok
dF (xi) > θ

∑

xi∈Ok
F (xi)

(8)

where: Ok – denotes the k-th object, F (xi) – foreground object

mask.

The object is considered as static if the measure SOk

exceeds a low threshold STH (0.05 - 0.1). It is used to

eliminate small distortions resulting mainly from the camera

noise or image compression artefacts.

To determine whether the object exists in the current frame

the mechanism described in the work [13] was adapted. It

involves a parallel edge analysis of the object (object’s mask),

the current frame and the background model. The authors

assumed that if the edges layout of the mask is more similar to

the current frame the considered object is static. In contrary,

when it is close to the background, then the object does not

exist (it is a “ghost”). Due to the difficulty of obtaining a direct

representation of the background in the PBAS method, it was

decided to use only the information from the current frame and

the object mask. In the solution, the Sobel edge detector was

used. For the current frame, the edge detection was performed

separately for RGB components and the results were combined

with an “OR” operator. Then, the edge map was binarized

with a fixed threshold and for each object a coefficient was

IN IN-1

PBAS
EDGE SIM

STATIC

EDGE CFD

EDGE

M

O

D

E

L

foreground

object 

mask

CCA
stability

(SOk)

edge

coefficient

(ECOk)

finall

foreground 

object 

mask

feedback

Fig. 3. Block scheme of the proposed algorithm. IN and IN−1 – two
consecutive frames from the video sequence, CFD – consecutive frame
differencing, CCA – connected component analysis.

calculated:

ECOk =

∑

xi∈Ok
FE(xi) == 1 ∧ IE(xi) == 1
∑

xi∈Ok
FE(xi) == 1

(9)

where: FE – foreground object mask edges, IE – current frame

edges, Ok – the k-th object.

An object for which the ECOk value exceeded 0.5 was

considered as present in the current frame. The threshold was

chosen experimentally after a careful evaluation of several test

sequences.

Using both described mechanisms and the PBAS foreground

object segmentation method, the following algorithm was

proposed (schematically in Fig. 3).

In the first step the object mask segmentation (PBAS),

edge detection (EDGE) and the consecutive frame differencing
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TABLE III
COMPARISON OF THE PBAS FPGA AND THE IMPROVED PBAS FPGA+ METHOD. SEQUENCES FROM THE Intermittent Object Motion SET

Sequence Algorithm Recall Specificity FPR FNR PWC F1 Precision

Abbadoned Box
PBAS FPGA 0.9181 0.9575 0.0425 0.0819 4.4430 0.6652 0.5216

PBAS FPGA+ 0.9909 0.9728 0.0272 0.0091 2.6357 0.7834 0.6477

Parking
PBAS FPGA 0.1153 0.9980 0.0020 0.8847 7.0267 0.2026 0.8320

PBAS FPGA+ 0.5584 0.9832 0.0168 0.4416 4.9708 0.6351 0.7361

Sofa
PBAS FPGA 0.5539 0.9962 0.0038 0.4461 2.3118 0.6767 0.8694

PBAS FPGA+ 0.5961 0.9962 0.0038 0.4039 2.1262 0.7101 0.8782

Street Light
PBAS FPGA 0.5278 0.9926 0.0074 0.4722 2.9979 0.6308 0.7839

PBAS FPGA+ 0.9619 0.9999 0.0001 0.0381 0.1980 0.9792 0.9972

Tram Stop
PBAS FPGA 0.8240 0.6992 0.3008 0.1760 27.8423 0.5151 0.3747

PBAS FPGA+ 0.9560 0.9709 0.0291 0.0440 3.1727 0.9154 0.8780

Winter Drive
PBAS FPGA 0.6883 0.9704 0.0296 0.3117 3.1745 0.2451 0.1491

PBAS FPGA+ 0.7220 0.9939 0.0061 0.2780 0.8108 0.5716 0.4731

(CFD) is performed. Then, connected component analysis is

realized (CCA). For each object the following data is collected:

• bounding box,

• area,

• number of pixels, for which the stability measure exceeds

a given threshold SOk > STH ,

• number of pixels, for which there is a match between

the mask edges and current frame edges, as well as the

number of edge mask pixels – ECOk.

It should be noted that the solution uses a single-pass

connected component analysis approach, because it is much

simpler and faster in an FPGA hardware implementation

[14]. However, it also involves some significant limitations.

At its output no labelled mask is available, but only object

parameters i.e. bounding box, area, etc. Therefore, the basic

representation on which the algorithm operates is a bounding

box and not the object mask. The use of a typical two-pass

connected component labelling could be a possible further

development of the system. On the basis of the data collected

for the objects the following operations are performed: small

objects are excluded from analysis (with area less than a given

threshold) and for others the stability (see Equation (8))

coefficient as well as the edge similarity (Equation (9)) is

calculated. These results are passed to the next iteration of the

segmentation algorithm and should be considered as feedback

from the analysis module. In Fig. 3 it is illustrated as STATIC

and EDGE SIM sub modules in the PBAS module.

Two variables were added to the PBAS background model

(see Section II-A) to realize the desired functionality. The first

stores the information about how many times a pixel has been

recognized as a part of a stationary object S(xi)CNT . It is

determined according to:

S(xi)CNT =







S(xi)CNT + 1 ifSOk >= STH

0 ifSOk < STH

S(xi)CNT − 1 else

(10)

The update of S(xi)CNT is performed for all pixels inside

a rectangular area, as a single object is represented by its

bounding box. For the pixels belonging to a stationary object

the value of S(xi)CNT is increased, for moving ones it is set

to zero and for background it is decreased.

The second variable is the running average of the edge

similarity value (EC(xi)mean), which is updated according

to the equation:

EC(xi)mean =

{

0.5EC(xi) + 0.5EC(xi)mean if A

1 else
(11)

where: A = SOk >= STH∧S(xi)CNT > SCNTTH , SCNTTH

is the minimal number of frames during which an object must

remain static in order to perform an analysis whether it is as

ghost.

In addition, the approach of neighbouring background

model update in PBAS was disabled, since it causes a slowly

and gradually introduction them into the model. Then, the

resulting change in the object’s shape makes the described

previously edge analysis unfounded in this case. In return, an

update mechanism for pixels considered as part of stationary

objects was added. It is realised when two conditions are met:

SOk >= STH ∧S(xi)CNT > SCNTTH ∧EC(xi)mean < 0.5.

The update itself is performed in a manner analogous to that

described in Section II-B.

The task of the above-described mechanisms is to ensure

that the inclusion of a foreground object into the background

model is only possible when the object is static for a long

period of time and its edge layout is not similar to the

one present on the current frame. Furthermore, the proposed

running average mechanism “filters out” transient errors.

A. Evaluation of the Proposed Modifications

The proposed mechanism for ghost elimination and proper

stopped object segmentation was evaluated on sequences
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a) b) c) d) e) f) g)

Fig. 4. Two exemplary test scenarios: upper row – stopped object, bottom row – ghost. Colums: a – frame used for background initialization, b – current
frame, c – analysis results, d – foreground mask edges, e – current frame edges, f – combined edge images, g – S coefficient. Detailed description in text.
Images from the changedetection.net database.

from the Intermittent Object Motion set. Comparison of the

PBAS FPGA and improved PBAS FPGA+ version is pre-

sented in Tab. III

Quantitative analysis of the presented data shows that the

proposed mechanism improves the results practically in all

cases. Nevertheless, a careful visual analysis of the sequences

and segmentation results reveals some problematic situations:

• on the Parking sequence the car is quite similar to the

background (in terms of colour). In addition, the vehicle

trajectory causes that the correct detection is not possible

from the beginning of the movement,

• on the Sofa sequence the objects have colours very similar

to the background. This makes the correct segmentation

and edge detection very difficult,

• on the Winter Drive sequence there are strong shadows,

which result in the presence of a large number of edges

in the scene. This leads to an incorrect classification of

a ghost as a real object.

Additionally, during the evaluation process of the algorithm

few situations were notices, that hinder the operation of the

method. Firstly, the occurrence of shadows distorts the mask

and the edges of objects – i.e. PBAS is quite sensitive to

shadows. On the other hand, the edges between the shadows

and the background on the current frame are usually not

detected as the difference is too small (the Sobel module).

Therefore, the described edge comparison approach fails in

such cases.

Secondly, some test sequences were recorded with auto-

matic white balance or gain control of the camera. Therefore,

the appearance of a large object (e.g. a truck) caused a change

in the scene lighting and numerous, though temporary, seg-

mentation errors.

When working on the method, it was also observed that the

acceleration of image processing in the software model using

either resolution reduction or frame dropping (i.e. processing

each N-frame) can give a misleading picture of the effective-

ness of the method or evaluated modifications.

Exemplary operation of the proposed approach is illustrated

in Fig. 4. In the top row the case of stopped object is presented.

At a first empty scene (column a), a red box is placed (column

b). In column c the analysis results are shown: the detected

object, its bounding box (red colour means no movement) and

edge similarity value (EC = 0.57). It is worth noting that the

presence of a shadow causes distortion of the object mask. In

the next two columns (d and e) detected edges respectively for

the foreground mask and the current frame are presented. In

column f the two edge images are combined (red – foreground

edges, green – mask edges, yellow – common part). It can

be noticed that the edge layout is quite similar. In the last

column (g) the coefficient S value is shown. The considered

object is stationary, as it is quite high. Finally, due to EC
value above the 0.5 threshold the object will be not included

into the background model.

In the second case (bottom row) a “ghost situation” is illus-

trated. During background initialization a man was standing in

front of a pedestrian crossing has been incorporated into the

background model (column a). Then he moved away (column

b). As result, two objects are detected (column c): a ghost

(left, red bounding box, EC = 0.22 ) and the “real” one (right,

green frame i.e. a moving object, EC = 0.76). Analysis of the

image in column f clearly shows that the ghost edges (green)

do not correspond to anything in the current frame (red). In

addition the ghost is stationary for a long time – column g. Due

to the low EC value and the stationarity it will be eventually

incorporated into the background model

V. HARDWARE IMPLEMENTATION OF THE IMPROVED

PBAS ALGORITHM

This section provides an overview of background modelling

approaches and discusses the proposed hardware module,

including details of the PBAS method and one-pass connected

component labelling and analysis. Also logical resources

utilisation, energy consumption and computing power are

summarized. Finally, the working system is presented.

A. Related Work

In the literature several articles can be found that de-

scribe hardware implementation of background generation

and foreground object detection in FPGA. In the work [15]

an implementation of GMM (Gaussian Mixture Models) is

described. The module allowed to process a High Definition

video stream with the frame rate of 20 fps. Several FPGA de-

vices were targeted in simulation, but no final working system

was presented (no external memory operations described or

implemented).

In the article [16] a hardware implementation of a back-

ground generation algorithm based on Horprasert’s method

was presented. The targeted platform was Xilinx Spartan 3

FPGA family. The authors modified the original algorithm by

adding the shadow detection mechanism which improved the
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Fig. 5. Block schematic of the proposed hardware foreground object detection system.

segmentation results. The system is an example of hardware-

software co-design approach. Part of the computation and

control functions were performed by a Microblaze softpro-

cesor. Moreover, two different logic description methods were

used: the high level Impulse-C language (object detection) and

VHDL (auxiliary modules). There was no background update

mechanism in the proposed design. The initial model was

created by the Microblaze softprocesor based on the first 128

frames of the video sequence. The morphological opening and

closing were used for post-processing. Also a foreground ob-

ject mask labelling mechanism was implemented. The system

was able to process 32 frames of 1024× 1024 resolution per

second. The estimated power dissipation was 5.76 W.

In the work [17] a hardware implementation of Codebook

method was presented. The module was tested on a Spartan 3

FPGA device. The general processing steps and methodology

were similar to the one described in the paragraph above. Only

the background generation algorithm was changed. Impulse-

C was used to implement the most important modules. The

Codebook method was altered to allow fixed point implemen-

tation. The resulting system was able to process 60 frames

of 768× 576 pixels images per second. The estimated power

consumption was 5.76 W. In the article quantitative results of

foreground object segmentation quality were presented which

indicated that it was the best method among those analysed

by the authors.

In paper [18] a modified sigma-delta approach implemented

in Virtex 4 FPGA device was presented. It used two back-

ground models: one updated always and one updated condi-

tionally. This unique approach allowed for better detection of

foreground objects which temporarily stopped at the scene.

The algorithm was a part of larger system implemented on

reconfigurable platform. There were also modules responsible

for edge detection, reflection detection, perspective correction,

Hough transform and labelling. The system was able to process

128×128 pixels images with the frame rate of 117 fps or 2528

fps (depending on version). A very low energy consumption

was pointed out as an important feature of the system.

In the work [19] a background generation method based on

the Clustering algorithm and foreground object segmentation

using information about intensity, colour and texture was pre-

sented. The system was working with CIE Lab colour space.

The NGD (Normalized Gradient Difference) was used as

a texture descriptor. A Sobel gradient computation module was

used to enrich the background model with information about

edges. The proposed system was tested using the Wallflower

[8] dataset. The implemented hardware module was verified on

the ML605 evaluation platform with Virtex 6 FPGA device.

The system was able to process HD images (1920 × 1080)

with the frame rate of 60 fps. The characteristic features were:

efficient communication with external DDR3 RAM memory –

the transfer reached about 5000 MB/s and compatibility with

HDMI cameras. The power consumption was 10.44 W.

The visual background extractor (ViBe) method implemen-

tation on Virtex 6 FPGA device was presented in [12]. The

system was able to work with maximum frequency of 140

MHz with colour video stream. The hardware realization on

development board was able to process 640×480 pixel images

with 50 frames per second. The main limitation was the

external RAM throughput.

The quite large number of research articles in last two

years proves that hardware implementation of background

generation and foreground object segmentation algorithms is

still an open and important research topic. Moreover the

efficient access to external RAM memory is a key factor in

building a real working system as well as achieving high

performance video processing.

B. Overview of the System

The block scheme of the proposed hardware system is

presented in Fig. 5. It corresponds to the algorithm depicted

in Fig. 3, but also contains a number of auxiliary hardware
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modules which are necessary to implement the system on

the VC707 evaluation board. Furthermore, in order to save

hardware resources all arithmetic operation were realised as

fixed point. A 16-bit representation was used in most cases.

The source of the video stream is a digital HDMI camera.

Then, the stream is received through the Avnet DVI IO FMC

module (FPGA Mezzanine Card) with HDMI input and output

(FMC), which is able to convert the high frequency serial

differential signal to a parallel format. The current frame is

then transferred to three modules: PBAS (detailed description

in Subsection V-C), CDF (consecutive frame differencing) and

SOBEL RGB.

The CFD module is responsible for computing the sum of

absolute difference between the current frame and the previous

one, which is stored in the external RAM as a part of the back-

ground model. It its the hardware implementation of Equation

(7) followed by thresholding. The SOBEL RGB module is

a realisation of the Sobel edge detector. The 3 × 3 context

generation is done using the classical delay line approach [20].

The vertical and horizontal components are combined using

sum of absolute values. Finally, a thresholding is performed.

The MEDIAN 9x9 is a simple binary median filter based

on delay lines and a summation tree. The D modules are

delays implemented as Block RAM FIFO’s or flip-flops. They

allow to synchronize the processing. The SOBEL module is

responsible for calculating object mask edges. The ONE PASS

CCA is described in details in Subsection V-D. It returns two

values: the status of a bounding box (moving or static object)

and the edge coefficient (EC). These parameters are stored in

a Block RAM memory and read in the next iteration. In this

way the feedback from the connected component analysis to

the PBAS foreground segmentation module is realised.

The model, as well as previous frame are stored in an

external DDR3 RAM memory. In previous works a special

controller (MEM CTRL) was designed to perform a sequential

read and write of a 1024-bit vector. Details are available

in [19].

C. PBAS Module

The block schematic of the PBAS module is presented

in Fig. 6. Three colour channels are split and directed to

three separate instances of the processing unit. Pseudo-random

number generation is carried out using the concept described in

[21]. It is worth noting that the authors of paper [21] made the

VHDL code of different RNG versions available. This allows

a quick integration of the module with the whole system.

Each single colour component processing unit loads the

background model generated in previous pass of the algo-

rithm from the external RAM memory. In the first step, the

distance between the current pixel value and all previously

generated samples is calculated (block dist – equation (3))

and compared with the threshold R(xi). This information is

passed to two modules. The first one is a summation tree.

The sum of distances exceeding R(xi) is compared with

a threshold and the foreground/background classification is

made (Equation (2)). The foreground masks obtained for each

colour component RGB are combined with an OR operator.

The second module is a block that computes the minimum
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Fig. 6. Block schematic of the proposed PBAS hardware module.

distance value and its corresponding index using a binary

comparison tree.

Although the segmentation result is calculated, the back-

ground model must be updated before the next iteration. To

do this, a 3D context is created. It has the basic 3× 3 sliding

window layout, but each single element consists of the current

pixel value (I(xi)), N background model samples (Bk(xi)),
N minimum distances (DK(xi)), rates (R(xi) ,T (xi)) and

previous pixel value.

Four random numbers are generated by the RANDOM

NUMBER GENERATOR block, which are received by the

update controller module. The first is used to deter-

mine if an update should be performed. If so, a random sample

from the central pixel, a random neighbouring model and

a random sample from this model are selected and replaced

with the corresponding current pixel values.

Finally, the mean minimum distance value (d̄min(xi)) for

the central pixel is computed. This requires the use of a sum-

mation tree and divider (module mean minimum distance).

The information is then used to update the decision threshold

(Equation (5)) and learning rate parameter (Equation (6)).
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The background model is initialized using a module not

shown in the block diagram. All parameters are set to default

values and the sample buffer is filled with randomly picked

pixels from a 3 × 3 context. The system is then switched to

normal operation mode by pressing a button.

D. One Pass Connected Component Analysis

The one pass connected component analysis hardware mod-

ule is presented in Fig. 7. Its main task is to label the segments

of binary object mask and count various parameters within it.

Four features are computed: the segment area, the number of

moving pixels within each segment, the number of edge pixels

of the segment and the number of edge pixels in original image

which are covered by segment edge pixels.

The first block is the labelling unit. This module is gathering

a 3 × 3 pixel context from the foreground object mask

generated by the PBAS module. The block is also keeping

track of previously assigned labels by using an ID counter

and generating a 3× 3 label context.

Based on the binary values in the mask context and pre-

viously assigned labels in the label context, a new label for

the current pixel is assigned according to a few rules. If the

mask value of the central element is one and if there is no

previously assigned labels in the label context, a new label is

assigned based on the ID counter value. If there are values in

the label context it means, that the currently processed pixel

belongs to a segment which has already been given an ID. If

the labels in the context are the same, they are used as an ID

for new pixel. If the values are not the same it means, that

a collision occurred (the current pixel is a merging point for

two differently labelled segments). Such situation happens, if

a shape like V letter is labelled from top to down. Because

of the scan order and context size (3× 3), only two different

labels can be present in the context. If the collision happens,

one label should be marked as merged and the other is used

as a new pixel label.

The information about the label number and collision event

is transferred to four area computation blocks. Each block is

a simple counter and a BRAM memory storing values for all

possible labels. If the collision occurs, the number of counted

pixels from both segments are summed up to one value and

merged label is marked as invalid. To prevent the module

access the invalid memory locations, all pointers (labels) are

appropriately redirected.

When the whole frame is processed according to presented

rules, the valid memory locations store values for separate

segments of the mask image. Two other blocks compute the

ratio of moving pixels to the whole segment area (SOk –

Equation (8)) and the number image edge pixels to the number

of segment edge pixels (ECOk – Equation (9)). Two hardware

dividers are used to accomplish this task.

E. System Integration

The project was described in VHDL and Verilog hard-

ware description languages and synthesised for a Virtex 7

(XC7VX485T) FPGA device using Xilinx ISE 14.6 Design

Suite. As the target platform the Xilinx VC707 evaluation

Fig. 7. Connected components analysis block.

board with and Avnet DVI I/O FMC module was chosen.

Simulations performed in ISim software confirmed that the

hardware modules are fully compliant with software models

designed in C++.

It is worth noting the VHDL files describing the main

processing module, as well as sub-modules: summation trees,

binary comparison tree, context etc., are generated automati-

cally using a script prepared in MATLAB. This allows for easy

modification of parameters, especially the number of samples

(N ). A similar approach is used to create the median module.

This makes the design very flexible and easy to implement

on other hardware platforms (e.g. with lower transfer rate to

external memory).

The reported maximal operating frequency after place and

route phase was 101 MHz, which is more than enough for real

time processing of a 720×576 colour video stream with 50 fps.

The power consumption reported by Xilinx XPower Analyzer

for the device (On-Chip) is about 3.483 W. The resource usage

is summarized in Tab. IV.

The working system is presented in Fig. 8. It consists of

an FPGA evaluation board (VC707 from Xilinx), an LCD

screen and a HDMI camera (not visible). Two scenarios,

analogous to the discussed is Subsection IV-A, are shown.

In the upper row a box is present during background model

initialization (Fig. 8a). When it is removed, a ghost appears

(Fig. 8b). The detected objects are marked as semi-transparent

red, and the corresponding bounding box as semi-transparent

blue. After some time it is incorporated into the background

model (Fig. 8c). In the bottom row, on a initially empty scene

((Fig. 8d) a box is inserted ((Fig. 8e). It is correctly detected

by the system (Fig. 8f). Concluding, due to the introduced

feedback from the analysis module, the foreground mask in

both situations is correct.
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b)a) c)

e) f)d)

Fig. 8. Working system. Resolution 720×576, 50 fps, N = 18. Images a, b and c – ghost scenario, images d, e and f – stopped object scenario. Description
in text.

TABLE IV
PROJECT RESOURCE UTILISATION

Resource Used Available Percentage

FF 41969 607200 6 %
LUT 6 39780 303600 13 %
SLICE 15931 75900 20 %
DSP 48 14 2800 1 %

BRAM 18 8 2060 1 %
BRAM 36 279 1030 27 %

VI. CONCLUSION

The article demonstrates a hardware implementation of an

improved method for foreground object segmentation based on

the PBAS algorithm. The starting point were the conclusions

drawn from research described in [6], where it turned out that

the original method fails in the case of distinguishing static ob-

jects and ghosts. A solution, which is based on the foreground

object properties analysis was proposed. For this purpose, the

stationarity of each connected component is determined, as

well as the object edges are compared with those present in the

current frame. Both parameters provide feedback for the PBAS

module and allow to differentiate stopped objects from ghosts.

Evaluation of the results for test sequences Intermittent Object

Motion from the changedetection.net dataset showed

an advantage over the original proposal. The proposed algo-

rithm was implemented in VHDL and Verilog languages and

successfully verified on the VC707 hardware platform with

reprogrammable FPGA device. The designed vision system

allows image processing with a resolution of 720 × 576 and

50 frames per second in real time.

As part of further work on the solution, whose principal

objective is to increase the reliability of foreground object

segmentation, the following issues will be addressed: the use

of optical flow for camera jitter compensation mechanism

or in a general case allowing free camera movement (e.g.

solutions with PTZ cameras), detection and elimination of

shadows and the correct segmentation in case of movement

in the background.

The obtained results show that, using high-end FPGAs,

which are equipped with considerable logic and memory

resources and have quick access to the external RAM, it

is possible to create an advanced real-time video system,

which is able to perform both image processing and analysis.

The designed system can be used in numerous solution e.g.

surveillance system, UAV and autonomous vehicles.
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