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Fully Analytical Characterization of the Series

Inductance of Tapered Integrated Inductors
Fábio Passos, M. Helena Fino, and Elisenda R. Moreno

Abstract—In this paper a general method for the determina-
tion of the series inductance of polygonal tapered inductors is
presented. The value obtained can be integrated into any inte-
grated inductor lumped element model, thus granting the overall
characterization of the device and the evaluation of performance
parameters such as the quality factor or the resonance frequency.
In this work, the inductor is divided into several segments and the
corresponding self and mutual inductances are calculated. In the
end, results obtained for several working examples are compared
against electromagnetic (EM) simulations are performed in order
to check the validity of the model for square, hexagonal, octagonal
and tapered inductors. The proposed method depends exclusively
on the geometric characteristics of the inductor as well as
the technological parameters. This allows its straight forward
application to any inductor shape or technology.
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I. INTRODUCTION

THE BENEFITS of wireless connections through radio

frequency (RF), for both communications and data trans-

mission, has been motivating research work in this field ever

since Guglielmo Marconi sent the first radio signal across

the Atlantic ocean in 1901 [1]. At the time the motivation

was the ability of communicate with people at hundreds of

kilometres away. Nowadays, the ability to communicate with

people is taken for granted, and the main goal is now to

increase the amount of information sent. To accomplish this

goal, an increasing demand for bandwidth has pushed new

standards in the wireless domain. These new standards evolved

towards higher operating frequencies. Besides the importance

of the increasing bandwidth, wireless transmission allows the

elimination of a physical connection between receiver and

transmitter, which is a key advantage in modern communi-

cation systems. With the explosive growth of the wireless

communication market the demand for fully integrated single

chip RF transceiver systems also increased. The demand for

low-cost RF integrated circuits also increased during the last

years and a tremendous interest has been generated in on-chip

passive components. During the past few years design efforts

were made with the goal of integrating passive components

such as resistors, capacitors and inductors. Compared to re-

sistors and capacitors which nowadays have several integrated

options, with most implementations being easy to model and
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implement, considerable effort is still needed to design and

model on-chip inductors.

Integrated inductors are commonly used in tuning, filtering

and impedance matching. The general lack of accurate Spice

like models, leads RF designers to design inductors through

a time consuming process of EM simulation and silicon

verification [2]–[4]. The design of integrated inductor involves

the determination of correlated geometric parameters, thus

making this process a candidate for optimization based design

methodologies. The integration of electromagnetic simulators

into optimization loops in order to calculate the performance

parameters of an inductor, such as inductance, quality factor

and self-resonance frequency (SRF), is a timely prohibitive

solution. To overcome the above mentioned problem, designers

usually adopt analytical solutions or inductor lumped-element

models to use in Spice like simulations. The first lumped ele-

ment circuit to model an inductor was used in 1980 [5]. Since

that date several authors suggested many different circuits to

model an inductor and to incorporate effects such as substrate

losses, skin effect, proximity effects and eddy currents [6]–

[8]. A survey about integrated inductor state-of-the-art can be

found in [9]. It is possible to develop non-intuitive models that

integrate several field effects thus providing a more accurate

model, however a trade-off between simplicity and accuracy

should be maintained, so a simple model such as the well

known π-model [10], as shown in Fig. 1, may be used.

Our focus in this paper is the determination of an analytical

expression for the evaluation of the series inductance,

Ls, for integrated planar tapered inductors of any shape

(square, hexagonal, octagonal). It should be noted that some

developments have been proposed over this methodology but

always for non-variable width integrated inductors [4], [11].

The other passive elements presented in the model represent

physical effects and may be calculated through a series

of formulas given in [11], [12]. The proposed analytical

expressions for the series inductance rely exclusively on

Fig. 1. Lumped-element inductor π-model.
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Fig. 2. Inductor model description for a one turn inductor.

geometric and technological parameters as a way of providing

more physical insights into the design key parameters as well

as enabling the straight forward application to new topologies

and technologies.

The method used to characterize inductors in this work is

based on the series inductance calculation, which is explained

in Section II. Section III describes in detail the proposed

modelling technique when applied to square, hexagonal and

octogonal inductors. Section IV presents the advantages of

using variable width inductors, and how to calculate the series

inductance for this type of inductors. Section V present the

experimental results against EM simulations, thus proving the

validity of the model. Finally in Section VI conclusions and

future work is presented.

II. SERIES INDUCTANCE

In 1929, Grover derived formulas for inductance calcula-

tion between filaments in several different relative positions

[13]. Greenhouse later applied these formulas to calculate

the inductance of a square shaped inductor by dividing the

inductor into straight-line segments, as ilustrated in Fig. 2, and

evaluating the inductance by adding up the self inductance

of the individual segment and mutual inductance between

segments [14]. Some authors call this method the mutual
inductance approach [15].

For the inductor depicted in Fig. 2, the series inductance

is given by (1). This specific case is the least complex one,

where there are no mutual inductances between segments.

Ls = L1 + L2 + L3 + L4 (1)

III. POLYGONAL SERIES INDUCTANCE CALCULATION

In this section the evaluation of the series inductance, Ls,

for any n-side inductor is presented. For illustrative purposes,

the particular case of an octagonal inductor is considered.

For an octagonal layout, such as the one in Fig. 3, the series

inductance can be calculateb by (2).

Ls = L0 +Mp+ −Mp− −Mlm (2)

where Ls is the total series inductance of the inductor, L0

is the self inductance of each segment, Mp+ is the parallel

mutual inductance between segments where the current flows

in the same direction whereas Mp− accounts for parallel

mutual inductance where current flows in opposite directions,

Mlm accounts for all the different types of mutual inductances

Fig. 3. Twenty-five section octagonal spiral inductor layout.

resulting from non-parallel segments. These mutual induc-

tances should be added or subtracted depending on the relative

flow of the current. The series inductance of the octagonal

inductor depicted in Fig. 3 may be calculated with (3).

Ls = L1 + L2 + ...+ L25

(Self inductance)

+2(M1,9+M2,10+M3,11+M4,12+M5,13+M6,14+...+M17,25)

(Positive mutual inductances)

−2(M1,5+M2,6+M3,7+M4,8+M5,9+M10,6+ ...+M25,21)

(Negative mutual inductances)

− 2(M1,2 +M2,3 +M24,25 + ...+M1,3 +M3,5 +M23,25+

...+M1,11 +M2,12 + ...+M16,25)

(Different mutual inductances) (3)

where to calculate the self inductance of each segment, Li,

the following formula should be used,

Li = 2l

{

ln

[

2l

w + t

]

+ 0.50049 +
w + t

3l

}

(nH) (4)

where l is the segment length, w is the segment width and

t is the segment thickness. This formula was proposed by

Greenhouse and is suitable for integrated inductors [14]. For

the evaluation of the mutual inductances, Mi,j , the relative po-

sitions of the segments must be taken into account. Due to the

magnitude and phase of the currents, the mutual inductances

are assumed identical in all sections, hence Mi,j=Mj,i.

For the evaluation of the mutual inductances, four different

cases reflecting the relative positions of the segments must

be considered: 1) between parallel segments, 2) between

segments that are connected at one end, 3) between segments

where the intersection point is lying outside the two segments

and 4) between segments where the intersection point lies

upon one segment. All these cases can be calculated with

the formulas provided by Groover [13], as presented in the

following sub-sections.

A. Parallel Segments

An example of two parallel segments is illustrated in Fig. 4

where li and lj represent the segments lengths, p is the pitch
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Fig. 4. Parallel segments.
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Fig. 5. Inductor segments connected at one end.

of the two wires. The pitch, p, of the inductor, is the distance

between the center of two parallel segments as can be observed

in Fig. 3. On the other hand, r and q are the difference

between the length of the segments. For the case of two

parallel segments, as depicted in Fig. 4, the mutual inductances

between two segments are calculated through the following

equation.

Mli,lj = 0.5 ·
[

(mlj+r +mlj+q)− (mr +mq)
]

(5)

where each mlx , is given by,

mlx = 2 · lx · Ux (6)

When calculating mlj+p for example, in (6) the segment length

lx, should be equal to lj + p. The mutual inductance factor,

U , and can be calculated through (7).

U = ln





lx
dx

+

√

1 +

(

lx
dx

)2



−

√

1 +

(

dx
lx

)2

+
dx
lx

(7)

where the distance between segments, dx, is considered as

the geometric mean distance (GMD), between segments and

calculated by (8).

ln(dx) = ln(p)−
w2

12p2
−

w4

60p4
−

w6

168p6
−

w8

360p8
−

w10

660p10
(8)

where w is the width of the segments in study.

B. Segments which are Connected at One End

An example for mutual inductance for segments which are

connected at one end, such as M4,3, is presented in Fig. 5.

These types of mutual inductance are calculated through

(9),

Mli,lj = 2cos(ε)·
[

litanh
−1

(

lj
li +R

)

+ ljtanh
−1

(

li
lj +R

)]

(9)
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Fig. 6. Inductor segment intersection outside the two segments.
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Fig. 7. Case for when the intersection point lies upon one segment.

where li and lj are the lengths of the segments and R is the

distance between the segment ends, that can be calculated by

(10).

R2 = 2l2i (li − cos(ε)) (10)

It is also possible to use one of the following relations to

obtain either R or ε.

cos(ε) =
l2i + l2j −R2

2lilj
(11)

R2

l2i
= 1 +

l2j
l2i

− 2
lj
li
cos(ε) (12)

C. Segments where the Intersection Point is Lying Outside the

Two Segments

The case of mutual inductance where the intersection point

is lying outside the two segments, for example, M3,5 (in

Fig. 3), is given in Fig. 6.

The mutual inductances in Fig. 6 are calculated by the

following equation,

Mli,lj = 2cos(ε)
[

(Mµ+li,ν+lj +Mµ,ν)− (Mµ+li,ν +Mν+lj ,µ)
]

(13)

where each one of the mutual inductances inside the paren-

thesis are calculated using (9).

D. Segments where the Intersection Point Lies upon One

Segment

The case where the intersection point lies upon one segment,

is the most complex case. An example of this type of mutual

inductances is for example M5,14 (in Fig. 3). This mutual

inductance is presented in Fig. 7.

It is important to state that lj is the entire segment. The

mutual inductances in Fig. 7 are calculated by the following

equation,

Mli,lj = 2cos(ε)
[

(Mli+µ,lj−r +Mlj−r,µ)− (Mli+µ,r +Mr,µ)
]

(14)
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where again, each one of the mutual inductances inside the

parenthesis are calculated using (9). For the evaluation of the

mutual inductances between segment li and r, and between

li + µ and r an angle of π − ε must be considered.

IV. TAPERED SQUARE INDUCTOR

The design of an optimal spiral is highly frequency

dependent. This is due to the multiple loss mechanisms

that appear from the distributed effects in the structure. In

general, for a fixed area, we can design an inductor with

many different values of metal width w, spacing s, and turns

n, to achieve the same value of inductance. As we increase

w for instance, the resistance drops. This drop is proportional

to 1/W at low frequencies but much more gradual at higher

frequencies, due to the skin effect, especially with w ≫ δ,

where δ is the effective skin width [16]. The substrate losses,

though, tend to increase with w, since this increases the

parasitics. At the same time, we observe that structures with

more turns, n, tend to have higher resistive losses in the

inner turns. The origin of these enhanced losses is due to

the fact that the magnetic flux increases as we move towards

the center of the spiral, due to the additive nature of the

flux from each successive loop of the spiral, for this reason

hollow spirals are preferred [17]. If the width of the structure

is tapered, as shown in Fig. 8, then the performance of the

spiral can be improved [18]. Since the wide inner turns do

not lower the resistance (due to current constriction), it is

better to transfer the width to the outer turns, while keeping

the total area of the spiral constant. For the optimum design

of tapered inductors a general method for the characterizing

its behaviour is needed.

The method proposed to calculate the series inductance of

this tapered layout is exactly the same as it was for non

tapered. A simple expression can be used to increase the width

of each segment proportionately. This formula is the same

one that ASITIC uses for the design the layout of tapered

integrated inductors and is given by,

w2
x = w0 + (wi − w0) ·

x

Nsides · n
(15)

where w0 is the width of the last segment of the outer turn,

whereas wi stands for the first segment of the inner turn, x is

the number of the segment, n is the number of turns and Nsides

is the number of sides of the polygonal structure. However

the width of each turn can be completely independent of any

equation. However, a small consideration has to be taken into

account. For tapered inductors, the pitch, p, in (8), is no longer

constant. A tapered integrated inductor is depicted in Fig. 8.

V. RESULTS AND DISCUSSION

In this section we present the results obtained for the

evaluation of the series inductance with the proposed method.

For the validation of the model we present results for square,

hexagonal and octagonal inductors with non-variable width.

The obtained results were compared against EM simulation

with ADS Momentum [19]. The technology used for the

Fig. 8. A square spiral inductor with tapered trace width.

simulation was UMC 130 nm. To reduce the losses, all

inductors were implemented in the top most available layer, so

in UMC 130 nm, metal 8 should be used, which has thickness,

t of 2 um. The square inductors have an area of 350 × 350
µm2 and the hexagonal and octagonal inductors have an area

of 400 × 400 µm2. All the inductors have a metal width,

w = 10µm and a spacing between metals, s = 2.5µm. The

error presented as εM , is the error of the model compared to

EM simulation.

TABLE I
Ls RESULTS WITH THE MODEL COMPARED TO EM ADS MOMENTUM

SIMULATIONS FOR EQUAL WIDTH INDUCTORS.

Sides n LM LADS εM (%)

4 2 3.48 3.45 0.99

4 3 6.55 6.46 1.39

4 4 9.89 9.77 1.23

4 5 13.25 13.24 0.08

6 2 3.05 3.00 3.15

6 3 5.90 5.65 4.44

6 4 9.20 8.60 6.98

6 5 12.24 11.68 7.96

8 2 3.30 3.17 4.10

8 3 6.40 6.00 6.67

8 4 9.91 9.25 7.14

8 5 13.40 12.60 6.35

For square inductors we have typical errors of 2-3%. On

the contrary of what was stated in other papers [12], it was

possible to design hexagonal and octagonal inductors, with

errors typically smaller than 2-3%. For smaller inductors the

error percentage is slightly higher and the reason may be

that for smaller inductors and for higher number of turns,

the inductor stops being hollow, increasing the eddy currents

which are not considered in this model.

For the tapered inductors, several simulations have been

made for octagonal tapered width inductors. The results are

presented in Tab. II. In this table the inductors simulated go

from n = 2 until n = 6. Every inductor has the first turn

width (w1) equal to 14 µm and the last turn width equal to

20 µm. The variation between each turn is independent of any

equation, but a ratio between each turn width was maintained

and the area of all the inductors is the same.

The results presented for the tapered octagonal inductors

have an average error around 2.5% which proves the validity

of the proposed method even for the most difficult layout

used nowadays. Square and hexagonal layouts have much

less segments, therefore decreasing the complexity of the
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TABLE II
Ls RESULTS WITH THE MODEL COMPARED TO EM ADS MOMENTUM SIMULATIONS FOR TAPERED WIDTH INDUCTORS.

n Din w1 w2 w3 w4 w5 w6 Area LM LEM Error

2 227 14 20 - - - - 300 1.84 1.97 6.41

3 188 14 17 20 - - - 300 3.43 3.46 0.84
4 149 14 16 18 20 - - 300 4.92 4.88 0.84

5 110 14 15.5 17 18.5 20 - 300 6.18 6.08 1.66

6 74 14 15 16 17 18.5 20 300 7.26 7.07 2.69

calculations, which is an indicator that the results would be

even more accurate.

VI. CONCLUSION

In this paper we have introduced an efficient integrated

inductor model for the prediction of the inductance for several

integrated inductor layouts. The results have been compared

with EM simulations with ADS Momentum where the model

has proven its validity for the different layouts, with all results

showing low deviations with respect to the EM simulations.

It was also proven that this model is suitable for its usage

with tapered inductors of different layouts. It may be observed

that generally the model achieves average errors of 3 %, thus

making this model a candidate for the design of integrated

inductors. As future work, the idea is to integrate this in-

ductance model into a pi lumped element model as a way

of evaluating the other performance parameters related with

integrated inductors, such as quality factor and self-resonance

frequency. This way, in the future the model can be integrated

in single- and multi-optimization algorithms in order to reduce

time on the design of integrated inductors. Exploring new

layouts for tapered inductors such as increasing the turn width

in the first turns and then decrease the width can also be a topic

for future research.
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