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Analytical Models for Distribution of the Envelope
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Abstract—In this paper, analytical expressions for the distri-
bution of the envelope and phase of linearly modulated signals
such as BPSK, M-PSK, and M-QAM in AWGN are presented. We
perform numerical simulations for different orders of signal con-
stellations. The results show that the proposed theoretical models
are in excellent agreement with the estimated distributions from
various numerical experiments.
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I. INTRODUCTION

MEASUREMENT of the probability density function

(PDF) plays a very important role in digital commu-

nication applications, such as signal detection and modulation

classification [1], [2]. The amplitude probability distribution

function has been found to be useful in characterizing signals

and evaluating effects of interference on victim receivers [3].

The theoretical derivation of the PDF of the envelope of

baseband digital signals in narrowband (color) Gaussian noise

has been presented in the literature [2]–[6]. In this paper, we

consider additive white noise channel and drive the PDF of the

envelopes of the linearly modulated signals (BPSK, M-PSK,

and M-QAM) as well as the PDF of the phases of M-PSK

signals.

II. SIGNAL MODEL

Assume that the received signal at the output of the matched

filter is modeled as,

xn = San + wn, n = 1, 2, . . . , N (1)

an = aIn + jaQn (2)

wn = wIn + jwQn (3)

where S is a scalar, an is the transmitted symbol, and wn

is the noise, the subscripts I and Q are the in-phase and

quadrature components, respectively, and N is the number of

samples during the observation interval. The noise component
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is modeled by a zero-mean Gaussian random variable with

independent real and imaginary parts, each of which has

a variance of σ2. We assume that the transmitted symbols are

independent and identically distributed and drawn from either

an M -array PSK or a square QAM constellation [7].

Without loss of generality, we assume that the constellation

has unit energy, i.e., E{|an|2} = 1.
For the N received samples, the SNR of interest is defined

as [8],

ρ =
S2

2σ2
(4)

Note that in the case of BPSK constellation, the imaginary

parts defined in (2) and (3) are zero, an’s are the symbols

taking the values of ±1 with equal probabilities to be 1 or -1;

in this case, the SNR is defined by,

ρ =
S2

σ2
(5)

To express the PDF of interest in terms of SNR, for

simplicity, we assume that the AWGN has unit variance. In

this case, the SNR (ρ) will be equal to S2.

III. DISTRIBUTION OF THE SIGNAL ENVELOPE

A. BPSK

As the received signal xn in (1) is corrupted with an additive

white Gaussian noise, one may find that the envelope of xn’s

can be modeled as an absolute value of a normal variable with

a mean of µ = S. That is,

p|x|(x) =
1√
2π

(

e−
(−x−

√
ρ)2

2 + e−
(x−

√
ρ)2

2

)

(6)

B. M-PSK

Assume that the an’s in (1) takes complex values inde-

pendently with equal probabilities, and wn is modeled by

a zero-mean Gaussian random variable with independent real

and imaginary parts, wIn and wQn, each of which has unit

variance. In this case, the SNR (ρ) will be equal to S2/2.

By calculating the square of xn,

|xn|2 = (SaIn + wIn)
2 + (SaQk + wQn)

2 (7)

Therefore, the square envelope |xk|2 can be modeled by

a non-central chi square variable with two degrees of freedom

and the non-centrality parameter of λ, where λ = S2.

That is,

p|x|2(x) =
1

2
e−(x+λ)/2

∞
∑

i=0

(λx)i

22i(i!)2
(8)
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TABLE I
THE WEIGHTS AND COEFFICIENTS USED IN EQ. (12).

M W
j

M
K

j

M

8
1/2 0.3820
1/2 1.9098

16
1/4 0.2229
1/2 1.1146
1/4 2.0062

32

1/5 1.9000
1/5 1.4529

1/10 1.0059
1/5 0.5588

1/10 0.1118

64

1/17 2.6453
2/17 1.9975
2/17 1.5656
3/17 1.3497
2/17 0.9178
2/17 0.7018
1/17 0.4859
3/17 0.2699
1/17 0.0540

As λ = S2 = 2ρ, one can get,

p|x|2(x) =
1

2
e−(x+2ρ)/2

∞
∑

i=0

(ρx)i

2i(i!)2
(9)

By using,

fY (y) =
fX(g−1(y))

|g′(g−1(y))| (10)

where y = g(x) =
√
x,

we arrive at the PDF of envelope of xk’s given as,

p|x|(y) = ye−(y2+2ρ)/2
∞
∑

i=0

(ρy2)i

2i(i!)2
(11)

C. M-QAM

In QAM signals, since there are different amplitudes in the

constellation, the PDF of |xk|2 becomes mixture of non-central

chi square.

That is,

p|x|2(x) =
1

2

∑

j

WM
j

(

e−(x+2KM
j ρ)/2

∞
∑

i=0

(2KM
j ρx)i

22i(i!)2

)

(12)

The weights WM
j and coefficients KM

j are related to the

probability of symbols and values of amplitudes, and Tab. I

tabulates the weights and the coefficients for a number of

constellations.

With the help of (10) and (12), the PDF of envelope of xk’s

will be,

p|x|(y) =
∑

j

WM
j

(

ye−(y2+2KM
j ρ)/2

∞
∑

i=0

(2KM
j ρy2)i

22i(i!)2

)

(13)

IV. DISTRIBUTION OF THE SIGNAL PHASE OF M-PSK

SIGNALS

The phase angle for a given I −Q pair is calculated by the

arctangent function of the ratio of quadrature to the in-phase

component of signal as,

ϕ = tan−1(Q/I) (14)

where Q and I are given in (1).

From (1), it is seen that both the real (I) and imaginary (Q)

parts of the M-PSK signal xn can be modeled by Gaussian

random variables with unit variance and mean of S cos(π/M)
and S sin(π/M), respectively. Therefore, the ratio Q/I can be

modeled by a mixture of ratio Gaussian distribution [9]. That

is,

pQ/I(x) =
1

M

M
∑

m=1

b(x) · c(x)
a3(x)

1√
2π

[

2Φ
( b(x)

a(x)

)

− 1
]

+

+
1

πa(x)
e−ρ (15)

where

a(x) =
√

x2 + 1,

b(x) =
√

2ρ cos(π/m)x+
√

2ρ sin(π/m),

c(x) = e
1
2

b2(x)

a2(x)
−ρ

,

Φ(x) =
1√
2π

∫ x

−∞

e−u2/2du,

By putting y = g(x) = tan−1(Q/I) into (10), one may get

the PDF of signal phase ϕ as,

pφ(ϕ) =
1

M
(1 + tan2(ϕ))

M
∑

m=1

b(ϕ) · c(ϕ)
a3(ϕ)

1√
2π

·

·
[

2Φ
( b(ϕ)

a(ϕ)

)

− 1
]

+
1

πa(ϕ)
e−ρ (16)

where

a(ϕ) =
√

1 + tan2(ϕ),

b(ϕ) =
√

2ρ cos(π/m) tan(ϕ) +
√

2ρ sin(π/m),

c(ϕ) = e
1
2

b2(ϕ)

a2(ϕ)
−ρ

,

Φ(ϕ) =
1√
2π

∫ tan(ϕ)

−∞

e− tan2(ϕ)/2dϕ.
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a) b)

c) d)

e) f)

g) h)

Fig. 1. The PDF of envelope of noisy linearly modulated signals, a: BPSK (SNR = 0dB), b: BPSK (SNR = 20dB), c: 64-PSK (SNR = 0dB), d: 64-PSK
(SNR = 20dB), e: 64-QAM (SNR = 0dB), f: 64-QAM (SNR = 20dB), g: 256-QAM (SNR = 0dB), and h: 256-QAM (SNR = 20dB).

V. SIMULATION RESULTS

To verify the derived expressions, we perform computer

simulations by generating BPSK, M-PSK, and M-QAM sig-

nals corrupted by AWGN with different SNR values, and

comparing the derived theatrical model with the simulation

results. In order to assure accurate estimations, close to the

true PDF, we set the sample size to be 100,000,000. For the

sake of space, we only include the results of BPSK, 64-PSK,

64-QAM and 256-QAM with SNR values of 0 and 20 dB for

the PDF of envelopes, and QPSK, 16-PSK and 64-PSK with

SNR values of 0 and 20 dB for the PDF of phases. The results

are shown in Figs. 1 and 2.

As we see from all figures, the results from the proposed

analytical models match well with the true PDF obtained

experimentally. Also, from Fig. 2 it is seen that by increasing

the order of modulation in M-PSK signals, the PDF of phase

approaches to a uniform distribution even for high SNR values.

VI. CONCLUSION

In this paper, we showed that the square envelopes of

M-PSK and M-QAM signals in AWGN channel follow non-

central chi square, and mixture of non-central chi square

distributions, respectively. We derived the PDFs of phase

M-PSK signals in AWGN channel and found the proposed

analytical models match well with the true PDFs.
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a) b)

c) d)

e) f)

Fig. 2. The PDF of phase M-PSK signals, a:QPSK (SNR = 0dB), b: QPSK (SNR = 20dB), c: 16-PSK (SNR = 0dB), d: 16-PSK (SNR = 20dB),
e: 64-PSK (SNR = 0dB), f: 64-PSK (SNR = 20dB).
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