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Differential and Common Mode Noise Waves
and Correlation Matrices

Janusz A. Dobrowolski

Abstract—This paper presents an innovative extention of the
noise wave definition to mixed mode, differential — and common-
mode noise waves which can be used for noise analysis of
differential microwave networks. Mixed mode noise waves are
used next to define generalized mixed mode noise wave correlation
matrices of microwave multiport networks. Presented approach
may be used for noise analysis of microwave differential networks
with differential ports as well as with conventional single ended
ports.
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mode noise wave correlation matrices, generalized multiport
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. INTRODUCTION

ANY present day RF and microwave networks are

implemented as differential networks. Such networks
require appropriate tools for characterization, analysis and
design. In 1995, D. Bockelman and W.R. Eisenstadt [1]
introduced so-called mixed-mode waves (wave variables) and
mixed-mode scattering parameters to extend the classical
single-ended wave approach to the differential case. In 2006,
A. Ferrero and M. Pirolla [2] introduced so-called generalized
mixed-mode scattering matrix which may be used for hybrid
networks having some ports differential and some ports single-
ended. Such theory may be used for characterization and signal
analysis and design of differential RF and microwave networks
containing differential amplifiers, baluns, transformers etc.

In this paper we introduce differential- and common- mode
noise waves as wave variables which are used for noise
analysis of differential microwave networks. Differential-and
common-mode noise wave definitions are based on the
pseudowave definition presented in [3] by R. Marks and D.
Williams. We present the relation of mixed-mode, differential-
and common-mode noise waves to the single ended, standard
noise waves. We introduce the differential- and common-mode
noise wave correlation matrices, discuss their properties and
their relation to standard, single-ended noise wave correlation
matrices. We introduce also the generalized mixed-mode noise
wave correlation matrix for multiport microwave networks with
mixed-mode, differential- and common-mode ports as well as
with single-ended ports. We derive and discuss the mixed-
mode noise wave correlation matrices for passive multiport
networks. Finally, we present some application examples
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deriving mixed mode scattering matrices of passive single-
ended two-ports, passive single-ended four-ports, baluns and
for differential amplifiers.

Il. DIFFERENTIAL AND COMMON MODE NOISE WAVES

As for a general n-port network excited by stationary signal
we define the single-ended noise voltage and noise current state
vector for port j as

rnj = [an inj]T (1)
where v, j and i, ; are noise voltage and noise current at the
port.

At single-ended port pair j,k of the mixed-mode port set, we
define the differential- and common-mode noise voltages and
noise currents as

Vid ik =Vnj — Vi O]

. i—i

IndjkE—nJZ n (3)
V.. +V

VncjkE—nl > n 4)

I ®)

The state vector containing the mixed-mode noise voltages
and noise currents of the port pair j and k is
° . . T
Fnjk = [Vnd i Tndje Vicjk ne jk] (6)
Relations (1) through (6) can be presented in matrix notation
as

?‘njk =Tr, (7
where
1 0 -1 o0
_ 0 12 0 -1/2 (®)
/2 0 1/2 0
0 1 o0 1
and

Mo ik E{rm} )
I’nk

By analogy to the single-ended port noise pseudowaves

defined in [4] as
IR.
=Ny 4.7 10
anl 2|ZI|(VnI +|n|Z|) ( )
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i inizi) (11)
where R; = Re{z}, and Z; is the reference impedance, we
define the mixed-mode noise pseudowaves corresponding to a

mixed-mode port as

(12)

(13)

(14)

(15)

N

cjk

where j and k indicate port pair of the mixed-mode port, Vngjg
and i, j are the differential-mode noise voltage and current
defined by (2) and (3), Ve and ingx are the common-mode
noise voltage and current defined by (4) and (5), Zg, is the
reference impedance for the common mode, Zg is the
reference impedance for the differential mode, and Ry =
RE{ZCjk}, and Rdjk = RE{Zdjk}.

Following matrix formalism presented in [1] for the
deterministic signal pseudowaves, we can write similar
relations for the noise pseudowaves. We have the port state
vector in terms of the noise waves defined as

a, Vo
W, = =M,|. " |=M;r; (16)
bnj Inj
where
IR A R (17)
! 2|Zj| 1 _Zj
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By analogy to (16), we can write the mixed-mode noise
wave state vector as

Qg jk Vid jk
V(i/njk = P =|\0/|jk i :I\O/ljk ;'njk (18)
ne jk Vie ik
Bue i e o
where
2,4 9244
oozl o
o 22,4 20z,
s e R ZafRs
Az, 2z,
o . AR ZagRs
I 2z, 4] 220 |
(19)

We define the overall noise wave state vector for the j-k
port pair as
w, j}
Wik = (20)
" |:Wnk

and from (16) and (17), we have

={Mj 0 }rnjk (21)

W, =M {r”‘le r
n jk ik ik T ik 0 M

If-nk

Finally, using (16) through (21), we receive the relationship
between the standard single-ended noise pseudo-waves and the
mixed-mode noise pseudowaves

Xy = 4Ri|Zo32, 4Rj[Z,42,
J

zR 2 +22) |zWR 2 -22,) [z, {Rex @ +224)

Waje =M TMAW, 4 = X, W, (22)
where
_‘Zi‘m@zi +Zdik) ‘Zj‘M(ZZi _Zujk) B ‘Zj‘M(ZZk +Zdjk) B ‘ZJ‘M(ZZk ~Zy jk)_
4\/R>i‘zdjk‘zj 4\/R>j‘zdjk‘zj 4ﬁ‘zdjk‘zk 4ﬁ‘zdjk‘zk
‘Zi‘m@zj_zdjk) ‘ZJ‘M(ZZJ""ZMK) _‘Zj‘M(ZZk—Zdjk) _‘ZJ‘M(ZZk+Zdik) (23)

4R |z4z, 4R |24,z

2 }Rex (2 -22.5,)

o,

chk

z, 4\/FTj

chk

Z;

4R,
2R 2 -22.3)  [2Re(2, +2205)  [2i]yRex (2 - 22,4

Z 4R |z 4|2,
‘Zi‘\/ﬂ(zk +ch1k)

chk

a0

zcjk

z, 4\/FTJ.
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In (10) through (23), Rj = Re{Zj}, Ry = Re{Zk}, Rdjk = Re{Zd
it and Rej = Re{Z¢ j}-

The matrix Xj given by (23) is the same as (16) in [1] which
presents relationship between the deterministic sinusoidal
signal single-ended pseudowaves and the mixed-mode
pseudowaves.

Relations (21) and (23) are valid for the complex reference
impedances Z;j, Z, Zq jx and Z¢ j. If we assume that the single-
ended port reference impedances are the same and real: Z; = Z
= Zg, and that Zgy = 2 Zg and Zgy = Zg/2, than (23) simplifies
to

10 -1 0
TR I

01 0 1

and from (22), we get

andjk:iz(anj—ank) (25)
bug i —iz(bn by (26)
e iz(anﬁank) 27)
Bue i %(bnj+bnk) (28)

These relations are the same as (18) in [1] and (3-4) in [2]
for the deterministic sinusoidal signal pseudowaves. It is
important to notice here that only when reference impedances
are real and when they satisfy relations Z; = Z, = Zg, Zgx = 2 Zg
and Zg = Zg/2, the ingoing differential- mode Noise Wave anq jk
and the common-mode noise wave a, j depend only on the
single-ended ingoing noise waves a, ; and a, i and
simultaneously the outgoing differential-mode noise wave bygj
and common-mode noise wave by depend only on the
outgoing single-ended noise waves by; and by In general case,
relations (24) through (28) are not true [1].

From this place of the text in this paper we will omit index
“n” at symbols representing noise quantities.

I11l. GENERALIZED MIXED-MODE NOISE WAVE CORRELATION
MATRIX

Fig. 1 illustrates a noisy multiport network having the
conventional single-ended ports and the mixed-mode,
differential- and common-mode ports.

For this network we can write the matrix equation

00 [o]

to)n :San"rc (29)

where

Ce(p- o—
c(p-1)p °
<
Ca(p-1)p lp “Eg::‘
h . Cp+1
Noiseless
Cp-1 multiport
network
Cecrr @ o
<
Cd12 lcz % bl: Cs

Fig. 1. Noisy multiport network with p mixed mode ports and n — p single
ended ports.

12 P Cy12
Ayas Byss Cyzs
Qg(p-1)p Bacp1yp Cacp-np
aclz bch Cn 12
° ac 34 o b034 ° Cc 34
an = bn = C=
Ac(p1yp bep-np Ce(p-nyp
ap+1 bp+1 Cp+1
a'n—l bn—l Cn—l
L an _ L n i Cn

(30)

o 0
anand by are the generalized mixed-mode noise wave vectors,
in which we combine the p mixed-mode noise waves sets with

0
the remaining (n — p) single-ended noise waves, and cis a
vector of p equivalent mixed-mode noise wave sets and (n — p)
equivalent single-ended noise waves representing noise
generated inside the noisy multiport network.

The matrix Sin (29) is the generalized mixed-mode
scattering matrix defined by (26) in [1].

Because the equivalent noise pseudo-wave source
representing noise generated in a network is expressed as [3,4]

Rz
"o
then for a pair j,k of two ports, forming mixed mode port set,
we can write

(31)
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Vi
c i
ujk_|:C::|:Njk V:( :Njk|: ::|_Njknjk (32)
ik
where
N. O
N,k—{oj N} (33)
k
\/E
N =Y1h _7 34
=t Al (34)
Rep
Nk—2|zk|[1 z,] (35)
”jkz[Vj iove i (36)

0 is 1 x 2 zero matrix, Z;, Z;, Z, are the reference impedances,
Ri = Re{Zi}, Rj = Re{Z,} and Ry = RE{Zk}

Using the definitions of the differential-mode and common-
mode noise voltages and noise currents, given by (2) through
(5), we introduce the differential- and common-mode
equivalent noise pseudo-wave sources representing noise
generated in the network

R..
djk = 2|Z—:::|(Vd i g wZa jk) (37)
oy = _;'; ey —icuZe,) (38)
c jk

where j and k indicate port pair of the mixed-mode port, Z j, -
the reference impedance for the common mode, Zgy - the
reference impedance for differential mode and R = Re{Z}
and Rdjk = RE{Zdjk}.

From (31) through (38) the port state vector of the mixed-
mode noise waves at the mixed-mode port j,k can be written as

s} C,. o o]
Uk = = Nk Nk (39)
cc jk
where
N N g 0
Ng=| ¢ 40
Jk { 0 chk:| ( )
v R
Ny = J [1 _Zd‘k] (41)
J 2|Zdjk| ]
A/ Reik
Ny =>—2%h -z.] (42)
¢ 9 chk ¢
0 » _[ . . ]T 43
Nic = Vo Tax Ve Lok (43)
and 0 is 1 x 2 zero matrix.
Using (8), (33) and (39) through (43), we can write
o cdjk o] o] 0 o] 4
Uik = =Njnx =N Tn, =Nx TNy U, (44)
cjk

or
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0 C.
U j Eij|:C]}=ijujk (45)
k

where

Y, =N TNy =

|Zi|m(zzi+zdik) _|Zk|M(ZZk+Zdjk)
= 4\/R_i|zd ,—k|Z,- 4\/R_k|zd jk|zk
B |zj|M(zj+2zcjk) Z(Re (20 +22,,)
4R;[Zcy2; 4R [Z. 2
(46)

Equation (45) is the generalized relation between the single-
ended equivalent noise wave sources and the mixed-mode
equivalent noise wave sources representing noise generated in
a multiport. Adopting a real and the same reference impedance
for both ports Z; =7 = Zg and assuming Zgjx = 2 Zg and Zg =
Zr/2, (46) simplifies to

11 -
Y, =— 47
which, substituted in (45), gives
oo =il (48)
djk \/E
GGy 49
Ceik —T (49)

Generalized relation for all ports of the mixed-mode noisy
network will have the form

u="Yu (50)
where
S _ _
U2 W U2
0
Uszs Uszs
.
o U(p-1)p U(p-1)p
u= and u= 51
cp+l Cp+1 ( )
Cp+2 Cp+2
Cn—l Cn 1
L G ] L G

lj is the column vector of the equivalent noise wave sources at
the mixed-mode ports and at the single-ended ports of a general
differential multiport, uis the column vector of the equivalent
noise wave sources at the single-ended ports of a multiport, and

Y, 0 . . 0
0 Yy :
Y= : . : (52)
' Y( p-1)p 0
R R

is the coefficient matrix in which submatrices Yj; are given by
(46). In (52) 1 is the (n — p) x (n — p) identity matrix.
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To determine the mixed-mode noise wave correlation matrix
compatible with the generalized mixed-mode scattering matrix,

o]
elements of column vector u, given by (51), have to reordered
to the form

Ca12

Cd 34

Ca(p-np

Cc12

c= CC34 (53)

This ordering may be done using a relation
0 Pd 0 ¢}
c=|P, [u=Pu=P%u
F)I
in which P is the n x n permutation matrix. Submatrices P4 and
P. are of size p/2 x n, while submatrix P, is of size (n — p) x n.

These matrices have all elements null apart a single 1 in each
row:

(54)

Pe(l,l21-2)=1; 1=1, 2, ..., p/2; Pq =0, elsewhere (55)

P(l,2)=1, 1=1,2,...,p/2; P.=0, elsewhere (56)
P(N=1,1=123, ..., (n-p); P, =0, elsewhere (57)

Using (53) and (54) the generalized mixed-mode noise wave
correlation matrix of a multiport can be derived as

o oo™t

Cs=cC =PYuu'¥'P' =P¥C,¥'P* (58)

In (58) C;=uu” is the standard single-ended noise wave
correlation matrix of a multiport discussed in [4]. Equation
(58) represents the generalized form of the single-ended noise
wave correlation matrix to the generalized mixed-mode noise
wave correlation matrix transformation.

As all noise correlation matrices, the generalized mixed-

0
mode noise wave correlation matrices Cs are Hermitian
o™t o’T

0
matrices, what means that Cs =Cs =Cs .

0
Because the vector ¢ may be written as

(59)

0]
the generalized mixed-mode correlation matrix Cs may be
partitioned into nine submatrices

o 0 o
Cw Ca Cus
o 0 0 o
CS = Ccd C Ccs (60)

o]

Csd &sc CS

cc

highlighting the correlation and cross-correlation between the
differential-, common-, and single-ended mode equivalent
noise wave sources representing noise generated in a mixed-
mode multiport. In (59) and (60), the “d”, “c” and “s”
subscripts at submatrices refer to the differential, common and
single-ended mode, respectively.

If the network is a single-ended four-port and its ports 1 and
2 are a pair forming the mixed-mode port, and similarly ports 3
and 4 are a pair forming the second mixed-mode port, and it is
assumed that Zd12 = Zd34 =2 ZR and chz = ZC34 = ZR/Z, where
Zg is the real reference impedance, common to all four single-
ended ports of the network, then

i 2 = . el
|Cd 1z| Cu12Cg3s  Cq12Cc12  Cy12Ccas
. " - -
C Cy21Ca1 |Cd 34 Cy34Cc12 CiaCeas
s = il
* * 2 *
Cc12Cu12 Ce12Cqas |Cc12 Ce12Ccas
- " - 2
| CcasCarz  CoaaCyas  CeaaCoro |Cc 34|

C11 + sz -2 Re{clz}
_ 1/ C;-C, —Cyp +Cyy

Cay—Cyp +Cy -Cypy

C13 - C14 - Czs + Cz4
Cyy +Cyy —2Re(Cy, }
2 C11 _sz - jZIm{Clz} C13 + Czs _C14 _C24
Cs —Cu— j2|m{C34}

(63)
C11 - sz + j2 Im{ClZ} C13 + C14 - Cza - Cz4
Cy+Cyp-Cy—Cp Cy—Cypy+j2 Im{C34}
Cy+Cyp+2 Re{cu} Cis+Cy+Cyp+Cy
Cy—C5—Cp+Cp Cy+Cpy +2 Re{C34}
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2
|Cd12|

o]
Cs =] CeyCapy

C3Cy12

C11 +C22 _2Re{C12} C11 _sz + j2|m{C12} \/E
:E Cu-Cyp - j2|m{012} Cu+Cy +2Re{clz} \/E
Jalci,+c;)

1

J2(c;, -c)
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*

CdlZCclz CdlZ C3
|Cc12|2 CchC;
CSC;Z |C3|2

(65)
Cl3 - Czs
Cis+Cy
2C,,

1 -10 O
0 0 1 -1
PY-M=-—L (61)
J2[1 1 0 0
0 0 1 1
and (58) becomes
C, = MCM" (62)

Using (61) and (62), we get the generalized mixed-mode

noise wave correlation matrix Cs in terms of the elements of
standard, single-ended noise wave correlation matrix Cs as (63)
shown at the bottom of the previous page.

For a single-ended three-port with ports 1 and 2 forming the
mixed-mode port, and assuming that Zy, = 2 Zg and Z, =
Zr/2, where Zy is the real reference impedance of the single-
ended ports, we have

1 -1 0
1
M=—|1 1 O

‘/500\/5

(64)

The generalized mixed-mode noise wave correlation matrix

0
Cs of such network, expressed in terms of standard, single-
ended noise wave correlation matrix Cs elements, is given by
(65) presented at the top of this page.

For a single-ended two-port network considered as a mixed-

mode one-port
11 -1
M=—"—
JEL 1}

o]
and the mixed-mode noise wave correlation matrix Cs of such
network, expressed in terms of the standard, single-ended noise
wave correlation matrix Cg elements, is

C035= &011 §12 :|:Cdd Cdc:|: M m
C, Cxn Cy C CoyoCipy |c012|2

) E{CM+CZZ—2RE{C12} Cy—Cp+ j2|m{C12}} ©7)

2|C,-Cyy—j2Im{C,} C,+C,+2Re(C,}

1 |c_1|2+|c_2|2—2Re{E} |c1£—|c2i+2j|m{c?c;

2 |c1|2—|c2|2—2j|m{c17c;} |c1|2+|c2|2+2Re C)

(66)

cc

1V. MIXED-MODE NOISE WAVE CORRELATION MATRICES OF
PASSIVE NETWORKS

As it was discussed in [5], the noise wave correlation matrix
of a passive single-ended multiport with real port reference
impedances Zg, equals

Co =kT(1-5s7) (68)

Using (62) and (68), and assuming that for all the mixed-
mode ports reference impedances are real, and that Zy j = 2 Zg,
and Z; j = Zgr/2, it can be proved that for passive mixed-mode
multiport networks described by their generalized mixed-mode

0
scattering matrices S, the generalized mixed-mode noise wave
correlation matrix is expressed by the similar to (68) relation

észm@_ééJ

where + indicates the Hermitian conjugate.

(69)

A. Mixed-mode noise wave correlation matrix of a passive
two-port network

Measurement of differential networks noise properties is still
a complicated problem at microwave frequencies. A method
based on a hot/cold differential load used as a differential noise
source has been presented in [6].

Figure 2 illustrates a passive single-ended two-port network
considered as a differential load with differential-mode and
common mode noise wave sources at its port.

C
—>
—. 1
) Ca12
Passive —
two-port 6 Ceto
— —
—. 2

Fig. 2 Passive single-ended two-port considered as a mixed-mode one-port
network and a source of noise waves

Using (68), the wave correlation matrix of a single-ended
two-port network can be written as
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Csz{cu C12:|= |C1|2

Cn Cyp c:c2 |c2

:kT[ 1_|*Sll|2_|s*12 2
_(811321 +812822) 1_|522| _|821

C,C,
.
|2 _(Slls;1+slzs;2)
|2
(70)

From (68), it can be seen that correlation between equivalent
noise waves ¢; and c, disappears when there is no coupling
between ports 1 and 2. This is the obvious conclusion.
Equivalent noise waves ¢; and ¢, are also not correlated when
a passive two-port network is matched at its port, that is, when
S11 = S, = 0. This result can be explained by examining, how
noise power generated in a passive network is delivered to the
reflectionless terminations in thermodynamic equilibrium.
These considerations can be found in [5].

Now, using (62), (66) and (70), we find the mixed-mode

o]
noise wave correlation matrix Cs of a passive two-port as

&11 = Cdd = |Cd12|2
kT . .
= 7[2 - |311|2 - |512|2 - |821|2 - |Szz|2 + 2Re{511321 +38,5, }]
(71)

822 = Ccc = |Cc12|2
KT * «
= 7[2 - |Sl1|2 - |Slz|2 - |821|2 - |Szz|2 - ZRe{SnSzl + S12322 }]
(72)
° =
C12 =Cy, = CyyoCep
KT . * .
= 7[_ |Sll|2 - |Slz|2 + |821|2 + |822|2 - Zjlm{susn +51,5, }]

(73)
where k is the Boltzmann’s constant and T is the physical
temperature of the network.

Considering a passive two-port as a source of the mixed-
mode noise waves Cq1, and 1o, We see from (71) through (73),

that the noise temperatures T, =|cd12|2/k and T, =|cc12|2/k,

for the differential-mode and common-mode noise waves
generated by a single-ended two-port are different.

For a symmetrical passive two-port, with S;; = Sy, and Sy, =
S,1, we have

Cus = Cyy =[cu] = |<T[1—|su|2 —|S,[ +2Re{s,.S;, }] (74)

L8 =Sl =[S

Cs =KT| - (Sllsgl + S12522 + 513553)*
—(SyuSq + 51,55 +515835)" = (5S4 + S5,55, + S5553;)

ézz =C = |Cc12|2 = kT[1_|Sll|2 _|512|2 - ZRe{SMSl*Z }] (75)

o]

Cu=Cy = CdlZC:lZ =0 (76)
From (74) through (76), we see that the common- and

differential-mode noise waves are uncorrelated but the noise

temperatures of the common- and differential-mode noise

waves are still different. When ports of a two-port network are

matched, S;; = S,, = 0, the noise temperatures Ty and T, are the

same and equal T [1— |Slz|zl.

B. Mixed-Mode Noise Wave Correlation Matrix of a Balun

It is a common practice to use two baluns or two hybrid
couplers at the input and at the output of a differential device
under test (DDUT) in order to embed the differential DUT into
a single-ended measurement setup [6-8]. Signal as well as noise
properties of the DDUT then have to be de-embedded from the
results obtained in a single-ended measurement environment.

Figure 3 shows a balun with the equivalent noise wave
sources at its ports.

C2
—
C1
«— ——e
®&—— Balun
—e
—>
C3

Fig. 3 A balun with the equivalent noise wave sources at its ports. Pair 2-3
of the single ended ports creates a mixed-mode port.

As it is a passive network, its standard noise wave
correlation matrix is given as

—
C. C, Cg, |Cl| GG GG

Cs= C;Z Cpn Cyul= Cl*CZ |Cz| C,Cq =kT(I_SS+) (77)

*

C, C, C * *
13 23 33 C,C; C,C, |C3|

* _

where S is the standard, single-ended scattering matrix of a
balun.
Using (77), we get

- (5115;1 + Sle; + 8138;3)
2 2 2
1_|821| _|522 _|323|

—(S1;S5 + 51,55 + S1553)
- (521551 + S2283*2 + 5233;3) (78)
2 2 2
1=[Sq| = Sao —[S3s]
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. 1 2C,, \/E(Clz - ClS) \/E(Clz + Cla)
Cs=— \/E C12 - Cl3 sz + C33 - ZRe{sz} sz _C33 + jZIm{Cza} (82)
V2 Cp, +Cp) Cp—Cyy+ j2|m{C23} Cp+Cy + ZRe{Cza}
Assuming that the balun is matched at all ports, that is Sy; = S, S, S Su
822 = 833 = 0, from (78) S S S S
1-1s 2—5 2 _s.§ s s g—|712 Pu Pu > (83)
| 12| | 13| 13923 12932 313 314 S11 313
* 2 2 *
Cs =kT —S135, 1_|521| _|Sz3| =SuSy Su Sz S Sy
* * 2 2
_521332 -3 1531 l_|531| _|532|
(79) Using (61), (62), (68) and (83), we receive
Considering the pair of ports 2 and 3 as a mixed-mode
port with the equivalent differential- and common-mode noise éll élz 0 0
waves, we can construct and derive generalized mixed-mode o o o o
noise wave correlation matrix. It is G -|Cu Ca|_jq|C Cu 0 0
7 i i les & o 0 & 8
C, C, * |Cl| C1C23 C1Cer3 o c 033 o u
° = 2 T = >
Cs =|Cyps || Cazs | =] CapsCs |Cd23| Cu2sCe2s 0 0 Gy Ca
— = T 2 84
Ceza | Cozs Ce23Ci CosCins |Ccz3| where (84)
(80) ¢, =1+Rels,S’ + 5,55 -8, =IS..[F —Is.? —[s..[* (85)
Using (62), with 11 { 11912 13 14} | 11| | 1z| | 13| | 14|
0]
1 \/E 0 0 Ci= Re{snsu + 812813}_ Re{811513 + S12814} (86)
M=—|0 1 -1 (81) °

72

we receive (82), shown at the top of this page. In (82) Cy;, i, j =
1,2,3 are the elements of standard noise wave correlation
matrix Cs given by (78) or (79).

0 1 1

C. Mixed-Mode Noise Wave Correlation Matrix of Passive
Four-Port Networks

Symmetrical single-ended four-port networks, presented in
Fig. 4, are commonly used as a mixed mode two-ports in
differential networks. For example, two symmetrical coupled
transmission lines represent such network.

[(92]
o
—

P U I

Fig. 4. Symmetrical four-port network with symmetry planes SP1 and SP2.

Single-ended scattering matrix of such networks is

Cy=1- Re{snsfz + S135:’1*4}_|311|2 _|812|2 _|Sl3|2 _|Sl4|2 (87)

0]

Ca = _Re{snsu + 812813}_ Re{susm + S12314} (88)
In a case of two identical uncoupled lines (Si; = Sy; = Sz =

S4z = 0 and Si3 = S3; = Sy = Syp = 0), relations (85) through

(88) simplify to

[o]

Cyy =1-[S,[ ~[Su|’ (89)
Ci. = Re{S,S5,| (90)
Cay =1-[Suf ~[Su[ (91)
Cas = —RelS,,S;; 92)

V. MIXED-MODE NOISE WAVE CORRELATION MATRICES OF
ACTIVE DIFFERENTIAL NETWORKS

Figure 5 illustrates a pair of transistors which form a
differential network with two mixed-mode ports.

Cy ° —o C3
C
Carz €— 3 - d
S |—c 2 —>
T et 4 -
Ce12 > s
G —e G -

Fig. 5 Differential pair of transistors.
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Because the noise generated in both transistors is not
correlated, the single-ended noise wave correlation matrix of
this network is

C, 0 0 C,
0 C, C. 0
=0 c:iz cza 0 ©3)
23 33
C, 0 0 C,

Using (62) and (93), we derive the mixed-mode noise wave
correlation matrix as

o] 0
2 Cw C
dd d
Cs=|3 oo

Ccd Ccc
Cu+Cyp —(Cu+Cy) Cu—Cp Cu—Cy (94)
_ 1 - <C14 + C23) C33 + C44 Cz3 - C14 C33 - C44
2| C,-Cy Cp—-Cy Cu+Cy, Cu+GCy 1
C14 - Czs C33 - C44 C14 + C23 C33 + C44

Finally, if we assume now that the transistors used in the

network are identical, what means that C;; = C,,, C33 = Cy44 and 2]
Cas = Cyg4, (94) simplifies to
c, -C, 0 o0 [3]
o |3, ¢ -C, C, 0 0
Cs = (03dd ((-):dc _ 14 44 (95) "
Cu Cc 0 0 Cll C14
0 0 C, C, [5]

In (93) through (95), C; are the elements of the standard
single-ended noise wave correlation matrices of active two-  [g]
ports (transistors) forming the differential network.
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In (44) and (46) NIkl is the one-sided inverse, the right el

inverse of N, what means that NjkN}i:I, but

-1
NN, = 1.
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_ ‘Zj‘ 0 _
\/FTJ_
_ ‘Zi‘* 0
N}&— \/Rﬁizi |Z| (A1)
0 A7k
JRe
0 _ |Zk|
i JRZ ]
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