LCLS – Large Laser Infrastructure Development and Local Implications

Authors

  • Ryszard S. Romaniuk Warsaw University of Technology, Institute of Electronic Systems

Abstract

The most powerful now in the world, American X-ray laser LCLS (Linac Coherent Light Source), has been working as a research and user facility  since 2009.  It is further developed to LCLS II machine at the Stanford National Accelerator Laboratory SLAC in Menlo Park CA. In a certain sense, LCLS II is a response to the EXFEL machine and a logical extension of LCLS. All these machines are light sources of the fifth generation. EXFEL is expected to open user facility in 2016, at a cost of over  1 mld Euro. LCLS II, which design started in 2010, will be operational in 2017. The lasers LCLS, LCLS II and EXFEL use SASE and SEED methods to generate light and are powered by electron linacs, LCLS by a warm one, and EXFEL by a cold one. The linacs have energies approaching 20 GeV, and are around 2 - 3 km in length. EXFEL linac uses SRF TESLA microwave cavity technology at 1,3GHz. A prototype of EXFEL was FLASH laser. SLAC Laboratory uses effectively over 50 years experience in research, building and exploitation of linear electron accelerators. In 2009, a part of the largest 3 km SLAC linac was used to build the LCLS machine. For the LCLS II machine a new infrastructure is build for two new laser beams and a number of experimental stations. A number of experts and young researchers from Poland participate in the design, construction and research of the biggest world linear and elliptical accelerators and FEL lasers like LCLS (Stanford), EXFEL (DESY) and CEBAF (JLab), and a few more. The paper concentrates on the development state-of-the-art of large laser infrastructure and its global and local impact, in the competitive world of R&D. LCLS infrastructure implications in Poland are considered.

Author Biography

Ryszard S. Romaniuk, Warsaw University of Technology, Institute of Electronic Systems

University Professor; Editor-in-Chief IJET; Chair Edit. Board Ph.Let.PL; Ed.Adv.Bd. Photonics Spectra; Director of ISE, FE&IT, WUT; Research Secretary, Committee of Electronics and Telecommunications, Polish Academy of Sciences; Eisenhower Fellow; SPIE Fellow; Member: IEEE, OSA, EOS, EPS, Jury - The Prism Awards for Photonics Innovation, Polish Physical Society, SEP - Assoc.Pol.El.Eng., Photonics Society of Poland.

References

SLAC Linac Coherent Light Source: lcls.slac.stanford.edu

European FEL Network: www.eurofel.org

R.Romaniuk, POLFEL – A free electron laser in Poland, Photonics Letters of Poland, 1 (3), pp.103-105, 2009.

R.S.Romaniuk, POLFEL – laser na swobodnych elektronach w Polsce, Elektronika, vol.51, nr 4, str. 83-87, 2010.

R.S.Romaniuk, Photonics applications and web engineering: WILGA May 2013, Proc.SPIE 8903, art.no.890303, 2013.

R.S.Romaniuk, Accelerators for society: succession of European infrastructural projects: CARE, EuCARD, TIARA, EuCARD2, Proc.SPIE 8903, art.no.890320, 2013.

R.S.Romaniuk, European X-Ray Free Electron Laser (EXFEL): local implications, Proc.SPIE 8903, art.no.8903OP, 2013.

R.S.Romaniuk, Accelerator science and technology in Europe 2008-2017, Proc.SPIE 8903, art.no.89031P, 2013.

R.S.Romaniuk, Europejski laser rentgenowski, Elektronika, vol. 54, no. 4, str.149-154, 2013.

J.Gajda, R.S.Romaniuk, Laser technology and applications 2012 – a preview, Proc.SPIE, vol. 8454, art no. 845418, 2012.

R.S.Romaniuk, Fizyka fotonu i badania plazmy, Wilga 2012, Elektronika, vol.53, nr 9, str. 170-176, 2012.

R.S.Romaniuk, Lasery rentgenowskie LCLC i LCLS II – SLAC, Elektronika, vol. 54, no. 4, str.66-69, 2013.

R.S.Romaniuk, EuCARD-2, Elektronika, vol. 54, no. 3, str.114-119, 2013.

R.S.Romaniuk, Akceleratory dla społeczeństwa TIARA 2012, Elektronika, vol. 54, no. 3, str.108-112, 2013.

R.S.Romaniuk, Technika akceleratorowa i eksperymenty fizyki wysokich energii, Wilga 2012, Elektronika, vol. 53, Nr 9, str. 162 – 169, 2012.

R.S.Romaniuk, Accelerator science and technology in Europe: EuCARD 2012, Proceedings SPIE, vol. 8454, art no. 84540O, 2012.

R.Romaniuk, Accelerator infrastructure in Europe EuCARD 2011, International Journal of Electronics and Telecommunications, vol.57, no.3, pp.413-419, 2011.

R.Romaniuk, EuCARD 2010 accelerator technology in Europe, International Journal of Electronics and Telecommunications, vol.56, no. 4, pp.485-488, 2010.

R.Romaniuk, EuCARD i CARE - Rozwój techniki akceleratorowej w kraju, Elektronika, vol.49, nr.10, str. 12-17, 2008.

R.Romaniuk, K.Pozniak, Metrological aspects of accelerator technology and high energy physics experiments, Measurement Science and Technology, vol.18. no.8, art.no.E01, 2008.

P.Fąfara, K.T.Pozniak, R.S.Romaniuk, et al., FPGA-based implementation of a cavity field controller for FLASH and X-FEL, Measurement Science and Technology, vol.18, no.8, pp.2365-2371, 2008.

T.Czarski, K.T.Pozniak, R.S.Romaniuk, et al., Superconducting cavity driving with fpga controller, Nuclear Instruments and Methods in Physics Research A, vol.568, no.2, pp.854-862, 2006.

T.Czarski, K.T.Pozniak, R.S.Romaniuk, et al., TESLA cavity modeling and digital implementation in fpga technology for control system development, Nuclear Instruments and Methods in Physics Research A, vol.556, no.2, pp.565-576, 2006.

T.Czarski, K.T.Pozniak, R.S.Romaniuk, et al., Cavity parameters identification for TESLA control system development, Nuclear Instruments and Methods in Physics Research A, vol.548, no.3, pp.283-297, 2005.

R.S.Romaniuk, Visions for the future of particle accelerators, Proc.SPIE 8903, art.no.890324, 2013.

PolFEL Technical Design Report (TDR), NCBJ, Warsaw-Świerk, 2012.

Downloads

Published

2014-06-30

Issue

Section

Fusion, HEP and XFEL electronics