Influence of Pumping Beam Width on VECSEL Output Power
Abstract
The paper is devoted to a numerical analysis of an influence of a pumping beam diameter on output power of optically pumped vertical-external-cavity surface-emitting lasers. Simulations have been carried out for a structure with a GaInNAs/GaAs active region operating at 1.32 μm. Various assembly configurations have been considered. Results obtained show that laser power scaling is strongly affected by thermal properties of the device.References
O. G. Okhotnikov, Ed., Semiconductor Disk Lasers: Physics and Technology. Weinheim: Wiley-VCH, 2010.
S. Chatterjee, A. Chernikov, J. Herrmann, M. Scheller, M. Koch, B. Kunert, W. Stolz, S. W. Koch, T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Power scaling and heat management in high-power vecsels,” in Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC), 2011 Conference on and 12th European Quantum Electronics Conference, May 2011.
S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Späth, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Applied Physics Letters, vol. 82, no. 21, pp. 3620–3622, 2003.
A. Chernikov, J. Herrmann, M. Scheller, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Influence of the spatial pump distribution on the performance of high power vertical-external-cavity surface-emitting lasers,” Applied Physics Letters, vol. 97, no. 19, pp. 191 110– 191 110–3, Nov 2010.
T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “Highpower optically pumped semiconductor laser at 1040 nm,” Photonics Technology Letters, IEEE, vol. 22, no. 9, pp. 661–663, May 2010.
J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electronics Letters, vol. 40, no. 1, pp. 30–31, Jan 2004.
R. P. Sarzała and W. Nakwaski, “Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” Journal of Physics: Condensed Matter, vol. 16, no. 31, p. S3121, 2004.
S. L. Chuang, Physics of Optoelectronic Devices. New York: John Wiley & Sons, 1995.
L. Piskorski, L. Frasunkiewicz, A. K. Sokol, and R. P. Sarzala, “A possibility to achieve emission in the mid-infrared wavelength range from semiconductor laser active regions,” in Transparent Optical Networks (ICTON), 2014 16th International Conference on, July 2014, pp. 1–4.
A. K. Sokół and R. P. Sarzała, “Numerical analysis of optically pumped VECSELs,” Proceedings of SPIE, vol. 8702, 2013.
T. Leinonen, Y. A. Morozov, A. Harkonen, and M. Pessa, “Vertical external-cavity surface-emitting laser for dual-wavelength generation,” Photonics Technology Letters, IEEE, vol. 17, no. 12, pp. 2508–2510, 2005.
M. Wasiak, “Mathematical rigorous approach to simulate an overthreshold VCSEL operation,” Physica E: Low-dimensional Systems and Nanostructures, vol. 43, no. 8, pp. 1439–1444, 2011.
R. P. Sarzala, L. Piskorski, P. Szczerbiak, R. Kudrawiec, and
W. Nakwaski, “An attempt to design long-wavelength (>2 μm) InP-based GaInNAs diode lasers,” Applied Physics A, vol. 108, no. 3, pp. 521–528, 2012.
R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, no. 4, pp. 801–810, Jul 2002.
R. P. Sarzała and W. Nakwaski, “Carrier diffusion inside active regions of gain-guided vertical-cavity surface-emitting lasers,” Optoelectronics, IEE Proceedings -, vol. 144, no. 6, pp. 421–425, Dec 1997.
A. Amith, I. Kudman, and E. F. Steigmeier, “Electron and phonon scattering in GaAs at high temperatures,” Phys. Rev., vol. 138, pp. A1270–A1276, May 1965.
S. Adachi, “GaAs, AlAs, and AlxGa1–xAs material parameters for use in research and device applications,” Journal of Applied Physics, vol. 58, no. 3, pp. R1–R29, 1985.
W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds,” Journal of Applied Physics, vol. 64, no. 1, pp. 159–166, 1988.
A. K. Sokół and R. P. Sarzała, “Comparative analysis of thermal problems in GaAs- and InP-based 1.3-μmVECSELs,” Optica Applicata, vol. 43, no. 2, pp. 325–341, 2013.
Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens,
Thermophysical Properties of Matter Volume 1: Thermal Conductivity: Metallic Elements and Alloys. New York: IFI/Plenum, 1970.
D. R. Lide, CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2005.
S. Kasap and P. Capper, Eds., Springer Handbook of Electronic and Photonic Materials. Leipzig: Springer, 2007.
S. Barman and G. P. Srivastava, “Temperature dependence of the thermal conductivity of different forms of diamond,” Journal of Applied Physics, vol. 101, no. 12, pp. 123 507–8, 2007.
S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” Journal of Applied Physics, vol. 87, no. 11, pp. 7825–7837, 2000.
S. R. Adachi, Physical Properties of III-V Semiconductor Compounds, 1st edition. Chichester: John Wiley & Sons, 1992.
W. K. Tan, H.-Y. Wong, A. E. Kelly, M. Sorel, J. H. Marsh, and
A. C. Bryce, “Temperature behaviour of pulse repetition frequency in passively mode-locked InGaAsP/InP laser diode — experimental results and simple model,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 13, no. 5, pp. 1209–1214, Sept 2007.
T. Kitatani, M. Kondow, K. Shinoda, Y. Yazawa, M. Okai, and K. Uomi, “Extremely large refractive index of strained gainnas thin films,” in Indium Phosphide and Related Materials,
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Electronics and Telecommunication
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.