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Abstract—In this paper we propose a discrete-time FIR (Finite 
Impulse Response) filter which is meant to be applied as a square root 
Nyquist filter and fractional delay filter simultaneously. The filter enables 
to substitute for a cascade of square root raised cosine (SRRC) Nyquist 
filter and fractional delay filter in one device/algorithm. The aim is to 
compensate for transmission delay in digital communication system. 
Performance of the filter in the role of a matched filter is evaluated using 
a newly defined energetic ISI (Intersymbol Interference) measure and 
ability of the filter to completely eliminate the ISI involved by fractional 
delay of symbol shaping filter in transmitter or by channel delay. 
Considerations and results of the contribution are documented by 
suitable eye-diagrams and the SRRC filter responses. 
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I. INTRODUCTION 
YQUIST filters [1], [2], [3], [4], [5], [6], [7], [8], [9], 
[10], [11], [12], [13], [14] are very important modules 

inherent in up-to-date data transmission systems through a 
band limited channel. The most often met of this kind of filter 
is SRRC –Square Root Raised Cosine filter. It is normally 
applied in transmitter side as a symbol signal shaping filter 
and in receiver side as a filter matched to elementary signal 
conveying a symbol of digital data.  However, in this paper the 
SRRC in transmitter side is not only a model of a symbol 
signal shaping filter but also it models the fractional 
subsample group delay d, ]2/1,2/1[−∈d , introduced by the 
transmission channel, measured in samples (Sa). 
Consequently, in the receiver, the matched filter should have 
the fractional sample delay of the opposite sign relative to the 
transmitter delay, imposed by the system of symbol 
synchronization, in order to compensate for the delay d. 

The scope of the paper is as follows. An original (with the 
best authors’ knowledge) way of designing the SRRC FIR 
(Finite Impulse Response) filter is proposed in Sect. II. It is a 
filter aggregating two features: ISI (Intersymbol Interference) 
free condition [1], [2], [3], [4], [5] and fractional time delaying 
[6], [7], [8], [9], [12] the signal under processing. In Sect. III 
we give an infographic documentation typical of this kind of 
filters performance with coefficients normalized to unit 
energy. Section IV is devoted to the eye-diagram 
representation. In order to evaluate the performance of the 
SRRC filter in the role of a matched filter in Section V we 
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define an energetic ISI measure characterizing the filter. In 
Section VI we summarize and conclude the contribution. 

II. BLOCK-SCHEME OF PROCESSING 
Figure 1 shows the block scheme illustrating the processing 

used in our experiments. Here instead of using a single raised 
cosine (RC) Nyquist filter of fractional sample group delay 
modeling overall signaling channel as it was in [12], a SRRC 
filter of fractional sample (or subsample) delay [6] is used at 
both transmitter and the receiver.  

It is assumed that the system input is a synthetic 
irredundant quadrature phase shift (QPSK) symbol train 
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where  ,2,1,0,=m , expressed by one sample (Sa) per 
symbol (1 Sa/symbol) and { } mmi ∀∈ 3,2,1,0][  are random 
independent numbers.  The symbol sequence ][mc  is 
interpolated by a factor of L using an adequate SRRC FIR 
filter denoted dG . As a result this gives a signal (sample 
train)  
 
{ } { } { }  ,2,1,0,;][][][ =↑== nmcLGncGn dLddν  (1b) 

 
Here symbol ↑L  stands for L-fold sample rate expander 

(zero inserter) followed by interpolating filter dG . The linear 
operator dG  is meant to describe the frequency response 

)( ωj
d eG  of the transmitter shaping SRRC filter in transmitter 

side of communication path [7] and ][ngd  is the impulse 
response of this filter having fractional group delay d Sa 
introduced by transmission channel. Here ),[ ππω −∈  in 
rad/Sa is angular (radian) frequency. Further on we shall use 
also normalized frequency )2/1,2/1[)2/( −∈= πωf  which is 

understood as a part of sampling rate. Hence )( ωj
d eG−  and 

][ng d−  stand for the frequency response and impulse 
response of the matched filter, respectively, that maximizes 
signal to noise ratio (SNR), operating in receiver side and 
having fractional delay d−  thus compensating the channel 
delay. The signal ][nvd  is received from transmission or 
propagation channel (here noiseless and of flat group delay) 
thus shaped by the SRRC and delayed by d. Here  
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is the received complex envelope in which the fractional delay 
d is compensated and whose instantaneous phase is denoted by 

][nddϕ . 
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Fig. 1. Block scheme of processing used in experiments; thin arrow stands for 
real-valued signal and thick arrow indicates complex-valued signal; operator  

ddH  marks an equivalent for the cascade of dG  and dG−  filters.  

The ideal prototype of the SRRC filter here is a classical 
analog SRRC Nyquist filter with the roll-off factor ]1,0[∈α  
for the spectrum meaning an intentional excess bandwidth, 
whose impulse response (both sides infinite) in the continuous 
time domain is expressed as [5], [7] 
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due to the consequence of del’Hospital rule. 

A discrete-time version of the above formula one obtains by 
substituting  
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to achieve the impulse response of a novel SRRC FIR filter 
involving fractional group delay d and transport (bulk) time 

delay 
2

1−
=

ND  (both denominated in Sa) 
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Such a problem has not been posed and developed in the 
literature yet. Further on the properties of the dG  filter for  

]5.0,5.0[−∈d  is documented and illustrated. 

III. NOVEL FILTERS CHARACTERISTICS 
Below we have gathered some examples of the novel SRRC 

filter dG  of fractional delay d value from the previous 
Section. 

 
a) 

 
 

b) 

 
 

c) 

 
 

d) 

 
 

e) 

 
 

Fig. 2. Impulse response (a) of the SRRC Nyquist filter dG  of length N=51 
and fractional delay d=0, (b) the filter amplitude response for d=0 in dB and 
(c) in linear scale as well as impulse responses for 5.0±=d  (d, e) where they 
are sampled at the midpoints of sample interval as in (a) for d=0 (cf. (2)).  
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The symbol interval in our examples equals 5 Sa, hence the 
interpolation factor in the scheme in Fig. 1 is 5=L  and 
typical roll-off factor 3.0=α . Length of this filter is generally 
set to be odd [5], [6], [7], [8] as given by formula 

12 += LN λ  (6) 
where λ  stands for the number of zero-crossings in the 
impulse response (5) tails before an after the maximal 
magnitude coefficient appearing for DNn =−= 2/)1( . In our 
experiments here we use λ =5, thus N=51 and 25=D . 

 
a) 

 
 

b) 

 
 

c) 

 
 

d) 

 
 

Fig. 3. Amplitude response of the SRRC filter of  5.0±=d  in dB (a) and in 
linear scale (b), and in the linear scale zoomed (c), and group delay responses 
in passband (d) between d=0 and d=+0.5 as well as between d=0 and 

5.0−=d .  

 

The impulse responses of the SRRC filter for 0=d  and for  
5.0±=d , and amplitude response 

f
j

d eG
πω

ω
2

)(
=

 for 0=d  

are depicted in Fig. 2. 

In Fig. 3a, b, c we have presented the amplitude response of 
the SRRC filter with 5.0±=d . This is very similar to that in 
Fig. 2 for d=0. 

 
a) 

 
 

b) 

 
 

c) 

 
 

d) 

 
 
Fig. 4. Impulse response and amplitude response of the filter ddH  (see Fig. 
1) for the shaping SRRC filter of 5.0±=d  in transmitter cascaded with the 
matched SRRC filter in the receiver of 5.0=d  named SRRC-SRRC 
Cascade; the ddH  filter length is 10112 =−N  and its group delay response 

is flat and equal 501 =−N . 
 
 

The term “fractional delay” mentioned in the paper title 
denotes the fractional part of group delay response )(ωτ d  of 
the filter dG  defined as 
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and measured in Sa. This way defined group delay responses 
of SRRC filters discussed here are collected in Fig. 3d. The 
“arg” in (7) stands for the unwrapped argument of a complex 
function.  

From the group delay responses in Fig. 3d we can see that 
they are slightly rippled and symmetric (here shown in pass 
band) around bulk delay 25=D  where d=0. 

Now, let us focus on ddH  filter replacing in Fig. 1 the 
cascade of two (shaping and matched) SRRC filters of the 
same magnitude but with opposite value of parameter d; 
formally  

dddddd GGGGH −− ==   (8) 

Hence amplitude response of the cascade equivalent filter is 

 
22
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For exemplary N=51 one obtains the ddH  symmetric FIR 
filter of length 10112 =−N  (see Fig. 4a) whose group delay 
response is flat and equal exactly 5012 =−= ND . It means 
that the fractional delay d was compensated by the cascade of 
filters with an opposite sign of d. The amplitude response of 
the ddH  filter is presented in Fig. 4b, c and d, in logaritmic 
(dB) scale and in linear scale. The amplitude response of this 
filter is similar to that of respective SRRC amplitude response 
from Fig. 3.  Comparing the figures we can see in Fig. 4 two 
times greater ripples in passband and two times smaller ripples 
in stopband than in Fig. 3. This observation could be read out 
from the relation (9). But such visual inspection of the above 
characteristics does not allow to evaluate how much the 
residual ISI of the ddGG−  cascade is left in received complex 
envelope ][nwdd . 

IV. EYE DIAGRAMS 
An estimation at the first glance of the residual ISI can be 

obtained from classical eye diagrams of the complex envelope 
][nwdd  Cartesian components. 

In Fig. 5 we have shown the eye diagrams [5] of in-phase 
component (real part) of received complex envelope ][nwdd  
for the scenario depicted in Fig. 1 – i.e. obtained as a result of 
filtering described by (1c) whose equivalent amplitude 
response is shown in Fig. 4. We can see in Fig. 5 that in the 
zoomed residual ISI eye-diagram amplitude jitter [5] is 
approximately 5 % of its true value in maximal vertical eye 
opening instant.  

 
 
 

(a) 

 
 

(b) 

 
 

(c) 

 
Fig. 5. Eye-diagram (a) of complex envelope ][nwdd  as a  response of 
cascaded transmitter SRRC filter of 5.0±=d  and matched SRRC fiter 

5.0=d  in the receiver; excited by symbol train (1a); both SRRC filters are 
of length 51=N ; below is maximal vertical opening instant (b) and (c) 
zoomed from the part (a) of  the same figure. 

For comparison the eye diagrams at the output of the 
shaping SRRC filter (denoted by dG  in Fig. 1) excited by (1) 
are presented in Fig. 6 for 0=d (a), 5.0=d  (b) and 5.0−=d  
(c). 

(a) 

 
(b) 

 
(c) 

 
 
Fig. 6. Eye diagrams at the output of the shaping SRRC (denoted by dG  in 

Fig. 1) of length 51=N  excited by (1a); (a) 0=d , (b) 5.0=d  and (c) 
5.0−=d . 
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From the above three eye-diagrams shown in Fig. 6 the 

fractional delaying effect of dG  filter is evident and also in 
Fig. 6 the eye-diagram blurring in maximum opening instant 
can be estimated as many times greater than after matched 

filter dG−  in Fig. 5a. 

V. ISI EVALUATION MEASURE 
The quantitative ISI measure involved by 1/L-band filter, 

approaching the Nyquist RC filter, can be derived estimating 
how much (in what degree) the impulse response ][nh  of this 
filter does not fulfill the Nyquist condition [13], [14]. For such 
a FIR filter of length N odd and nearly symmetric (i.e. of the 
coefficient having maximal magnitude for 2/)1( −= Nn  and 
of the same number λ  of zero-crossings in each of its tails) 
this Nyquist condition can be written as follows 
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Hence, in this Section we give a new quantitative insight 

into ISI evaluation measure. More generally let ][nh , 
1,1,0 −= Nn   be the impulse response of FIR interpolation 

filter (or decimation filter, Nyquist RC filter, SRRC filter, a 
cascade of two SRRC filters, …) of 1/L bandwidth and of odd 
length N (6) with ,4,3,2=L  and ,4,3,2=λ . The 
measure of ISI relative quantity introduced by the filter we 
define by the formula  
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This measure is valid for a particular input having the form 

of unipolar equivalued symbol train. The value I in (11) is a 
small number, whose modulus can be expressed in percent I
%. However, it is more adequate to use root mean square 
measure of  ISI quantity 
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The rmsI  is a measure which is consistent with eye-diagram 

blurring discussed in previous Section. In Table I we can see 
about 10 (and more) times compression of rmsI  for the 
cascade SRRC in ddH  ( dG  and dG−  in Fig. 1) relative to 

dG  or dG−  inspected solely. This compression ratio remains 

in agreement with how much the eye-diagram in Fig. 5 is 
concentrated by the matched filter. 
 

TABLE I 
Table I. ROOT MEAN SQUARE (RMS) ISI MEASURES FOR SRRC AND FOR THE 

CASCADE OF TRANSMISSION dG  (SHAPED) AND RECEIVER dG−  

(MATCHED) SRRC FILTERS OF FRACTIONAL DELAY D 
  

d 
 

%in  SRRCfor 
rmsI  

%in  Cascade SRRCSRRC-for 
rmsI  

0 13.12 1.36 
± 0.1 13.25 1.36 

± 0.2 13.66 1.36 

± 0.3 14.33 1.35 

± 0.4 15.26 1.33 

± 0.5 16.43 1.32 

 
Another expression for ISI measure, this time an energetic 

measure eI , is given by   
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Both this measures (12) and (13) can be expressed in 

percent or on logarithmic scale. Moreover, reciprocal of these 
measures have to be treated as SNR i.e. ratio of the symbol 
energy to energy of noise “produced” by intentional or 
residual ISI. 

 
TABLE I 

ENERGETIC ISI MEASURES FOR SRRC AND FOR THE CASCADE OF 

TRANSMISSION dG  (SHAPED) AND RECEIVER dG−  (MATCHED) SRRC 

FILTERS OF FRACTIONAL DELAY D 
 

d 
 

%in  SRRCfor 
eI  

%in  Cascade SRRC- SRRCfor 
eI  

0 1.72 1.86 210−⋅  
± 0.1 1.76 1.855 210−⋅  
± 0.2 1.87 1.839 210−⋅  
± 0.3 2.05 1.814 210−⋅  
± 0.4 2.33 1.779 210−⋅  
± 0.5 2.7 1.7354 210−⋅  

 
In Table II we can see about 100 (and more) times 

compression of eI  for the cascade SRRC in ddH  ( dG  and 

dG−  in Fig. 1) relative to dG  or  dG−  inspected  solely. This 
number represents processing gain of receiver due to an 
application of the matched filter dG−  used in Fig. 1. This 
justifies the sense and usefulness of ISI measures proposed in 
this contribution. 

VI. CONCLUSIONS 
The subject of investigations described in this paper was 

introduced in [12], [8] as a special (here Nyquist) discrete-
time filter of fractional group delay [6]. The concept of 
enrichment the Nyquist RC filter, formerly explained in [12], 
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by this extra (and important in applications) feature, without 
making complicated its structure and design, was transferred 
here from RC to SRRC filters. On the example of typical 
isochronous system of data transmission applying QPSK 
signals, the practical usefulness of the novel kind of the 
proposed non-recursive filter as a time-synchronized matched 
filter enabling the receiver optimal ISI elimination was 
experimentally proven. Operation of the new filter, both in 
roles of the shaping filter as well as the matched filter, was 
illustrated using suitable eye-diagrams. A new ISI (rms and 
energetic) measures involved by 1/L-band filter were defined 
and applied to performance evaluation of the shaping filter and 
the cascade of the shaping filter and the matched filter.  Our 
experiments revealed that the ISI involved by the SRRC 
shaping filter due to its fractional delay was almost completely 
eliminated by the SRRC matched filter of fractional delay but 
with opposite sign relative to the shaping filter. 
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