Modelling and Simulation of Normally-off AlGaN/GaN MOS-HEMTs
Abstract
The article presents the results of modelling and simulation of normally-off AlGaN/GaN MOS-HEMT transistors. The effect of the resistivity of the GaN:C layer, the channel mobility and the use of high- dielectrics on the electrical characteristics of the transistor has been examined. It has been shown that a low leakage current of less than 10-6 A/mm can be achieved for the acceptor dopant concentration at the level of 5x1015 cm-3. The limitation of the maximum on-state current due to the low carrier channel mobility has been shown. It has also been demonstrated that the use of HfO2, instead of SiO2, as a gate dielectric increases on-state current above 0.7A/mm and reduces the negative influence of the charge accumulated in the dielectric layer.References
B.J. Baliga: Gallium nitride devices for power electronic applications, Semicond. Sci. Technol., 28, 074011, (2013).
W.Saito et al.: Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications, IEEE Tran. on Electron Devices, vol.53, no.2, pp.356-362, (2006).
Y.Cai et al.: High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment, IEEE Elec. Dev. Letters, vol.26, no.7, pp. 435–437,(2005).
O.Hilt et al.: Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN buffer, Proceedings of 22nd Int. Symp. on Power Semiconductor Devices & IC’s (ISPSD), pp.347-350, (2010).
K.-S. Im et al.: Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure with Extremely High 2DEG Density Grown on Silicon Substrate, IEEE Elec. Dev. Letters, vol.31, no.3, pp.192-194, (2010).
http://www.silvaco.com/products/tcad/device simulation/atlas/atlas.html
J.L. Lyons, A. Janotti, C.G. Van de Walle: Carbon impurities and the yellow luminescence in GaN, App. Phys. Lett. 97, 152108, (2010).
M.J. Uren et al.: Buffer design to minimize current collapse in GaN/AlGaN HFETs, IEEE Tran. on Electron Devices, vol.59, no.12, pp.3327-3333, (2012).
H. Morkoc, Handbook of Nitride Semiconductors and Devices, Volume 1, Materials Properties, Physics and Growth. Wiley, Weinheim (2009).
M. Farahmand et al.: Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries. IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 535–542, (2001).
Y. Wang et al.: High-performance normally-Off Al2O3/GaN MOSFET using a wet etching-based gate recess technique, IEEE Tran. on Electron Devices, vol.34, no.11, pp.1370-1372, (2012).
Y. Niiyama et al.: Normally off operation GaN-based MOSFETs for power electronics applications, Semicond. Sci. Technol., 25, 125006, (2010).
T.E. Cook Jr. et al.: Measurement of the band offsets of SiO2 on clean n- and p-type GaN(0001), J. Appl. Phys. 93, 3995, (2003).
J.J. Freedsman et al.: Normally-off Al2O3/AlGaN/GaN MOS-HEMT on 8 in. Si with low leakage current and high breakdown voltage (825 V), Appl. Phys. Express, 7, 04100, (2014).
W. Ahn et al.: Normally-off AlGaN/GaN MOS-HEMTs by KOH wetetch and RF-sputtered HfO2 gate insulator, Proceedings of 25th Int. Symp. on Power Semiconductor Devices & IC’s (ISPSD), p.311-314, (2013).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Electronics and Telecommunication
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.