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Abstract—In this paper there is presented and discussed a 
general analysis method for noise characterization of noisy 
multiport differential networks. It is based on mixed mode, 
differential and common mode, noise waves representation of 
noise, generalized mixed-mode scattering parameters and 
generalized mixed-mode noise wave correlation parameters for 
the network. There are derived analytical relation between the 
noise figure for a given output port and the noise matrix and the 
scattering parameters of the network, as well as the correlations 
between the input port noise waves. The signal to noise ratio 
degradation factor is derived and discussed, too. Presented results 
can be implemented directly in a CAD software noise analysis of 
differential microwave multiport networks with differential as 
well as with conventional single ended ports. 
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I. INTRODUCTION 
ANY present day RF and microwave networks are 
implemented as differential networks. In comparison to 

standard single ended networks, differential are more resistible 
against external disturbances and noise, particularly supply and 
ground noise. Differential networks require special tools for 
characterization, analysis and design. D. Bockelman and W.R. 
Eisenstadt {1] have introduced so-called mixed-mode waves 
(wave variables) and mixed mode scattering parameters to 
extend the classical single-ended wave approach to the 
differential case. In 2006, A. Ferrero and M. Pirolla [2] 
introduced generalized mixed-mode scattering matrix which 
can be used for hybrid networks having some ports differential 
and some ports single-ended. Such theory may be used for 
characterization and signal analysis and design of differential 
networks containing differential amplifiers, baluns, 
transformers etc. 

 The noise wave formalism has been applied for years to 
study noise wave properties of single ended two-port devices 
and networks [3-4] and multi-port networks [5-6].  J. Randa [7] 
has proposed a way to apply single–ended noise waves and 
standard single-ended scattering parameters to derive noise 
parameters of differential multiport networks. In [8-10] mixed 
mode noise wave formalism and mixed mode S parameters are 
applied to derive the differential noise figure of four port 
differential networks. 
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 In this paper there is presented a general noise analysis 
method which is based on mixed mode, differential- and 
common-mode, noise wave formalism [12] derived from 
pseudo-wave definition presented in [11] by R. Marks and D. 
Williams, the generalized mixed-mode scattering matrix [2] 
and the mixed mode noise wave correlation matrix [12]. 
Presented approach may be used for noise analysis of 
differential networks with mixed mode ports as well as with 
single-ended ports. The method is applied to evaluate the 
differential noise figure and the differential signal to noise ratio 
degradation factor of mixed mode multiport networks. 

 

II. NOISE ANALYSIS OF MIXED MODE MULTIPORT NETWORKS 
 

This approach to the analysis of noisy microwave multiport 
mixed-mode networks is based on assumption that a linear 
noisy network can be represented by the single n x n 

generalized mixed-mode scattering matrix 
o
S  and a vector 

o
c  of 

the equivalent noise wave sources representing all intrinsic 
noise sources in the multiport [1,2,12]. For such network we 
can write 

oooo
caSb +=          (1) 

where 
o
a  and 

o
b  are vectors of the ingoing and outgoing 

generalized mixed-mode noise wave amplitudes and 
o
c  is a 

vector of amplitudes of the generalized mixed-mode equivalent 
noise wave sources representing the intrinsic noise sources in 
the multiport network. 

 One-port terminations of the multiport are characterized by 
the equation 

L
oooo
cbΓa +=          (2) 

in which L
o
c  is the vector of the generalized mixed-mode 

equivalent noise wave sources representing thermal noise 
generated in terminations (in loads and in internal impedances 
of the signal sources) connected to the ports of the multiport, 

and 
o
Γ  is the n x n reflection coefficients matrix of signal 

sources and loads connected to the n ports of the multiport.  

Vectors   and  , , L
oooo
ccba are the generalized mixed-mode 

noise wave vectors, which combine the p mixed-mode port set 
of noise pseudowaves and the remaining (n – p) single-ended 
port set of noise pseudowaves 
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The first p/2 elements in vectors   and   , , L
oooo
ccba are named, 

respectively, ad, bd, cd and cLd. Elements of these vectors are 
the differential-mode noise wave variables at the mixed-mode 
ports of the network. The second set of p/2 elements in vectors 

  and  , , L
oooo
ccba are named, respectively, ac, bc, cc and cLc. 

Elements of these vectors are the common-mode noise wave 
variables at the mixed mode ports of the network. And finally, 

the last (n-p) elements in vectors   and  , , L
oooo
ccba are named, 

respectively, ae, be ce and cLe. Elements of these vectors are the 
single-ended noise wave variables at the single-ended ports of 
a multiport network. 

 

The matrix 
o
Γ  in (2) is the (n x n) matrix with entries equal to 

the reflection coefficients seen at each signal source port or 
load port of the network 
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In (4), the submatrix Γd is the (p/2 x p/2) diagonal matrix 

with the differential-mode pseudowave reflection coefficients 
at ports of the differential signal sources and the differential 
loads on the main diagonal. The submatrix Γd is given by (5). 
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The matrix Γc in (4) is the (p/2 x p/2) diagonal matrix with 

the common-mode pseudowave reflection coefficients at ports 
of the differential sources and the differential loads on the main 
diagonal. The matrix Γc is given as 
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The matrix Γe in (4) is the (n – p) x (n – p) diagonal matrix 

with the single-ended mode pseudowave reflection coefficients 

at ports of the single-ended signal sources and the single-ended 
loads on the main diagonal. The matrix Γe is given by 
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The matrices Γdc and Γcd in (4) are also the (n – p) x (n – p) 

diagonal matrices. They are given by (8) and (9). 
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The main-diagonal elements of the matrices Γdc and Γcd are 

the mode conversion reflection coefficients of particular 
differential signal sources and of particular differential loads. 

 Eliminating the vector a from (1) and (2), we receive the 
equation for the outgoing noise wave vector versus the waves 
of noise sources 
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L
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in which I is the identity matrix. 

The noise wave correlation matrix for the outgoing noise 
pseudowaves at all ports of the multiport is 
 

+

=
oo
bbN          (11) 

 
 
The diagonal elements of the noise correlation matrix N are 

equal to the power spectral densities of the output noise in 
respective ports of the multiport. The off-diagonal elements of 
N are the correlation between the output noise in different ports 
of the network. Using (10) and (11), we can write 
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In deriving (12) we have taken into account the obvious fact 

that the noise waves originated in the multiport are not 
correlated with noise waves generated in the terminations. 

The generalized noise wave correlation matrix  
 

*oo
S

o
ccC =          (13) 

 
in (12) is the intrinsic noise matrix of the multiport network, 
while 
 

+

= L
o

L
o

L
o

ccC          (14) 
 

s the generalized correlation matrix for the equivalent noise 
pseudowave sources due to the thermal noise of passive 
terminations loading each port of the multiport network. 

 Based on (3) and (9), the matrix L
o
C  may be written as {14] 
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 Because the thermal noise generated in differential and 
single-ended terminations loading each port of the network is 
uncorrelated, all noise correlation submatrices presented in 
(15) are the diagonal matrices. The elements of the matrix ALd 
corresponding to the differential mode noise waves produced 
by differential terminations are given by 
 

( )2
dc

2
d

0

a
Ld 1 ii

i
ii T

T
A Γ−Γ−=      (16) 

 
where idΓ  is the differential mode reflection coefficient of the 
differential signal source port or the differential load port with 
the port number i, idcΓ  is the mode conversion reflection 
coefficient of the differential signal source port or of the 
differential load port with the port number i, and Tai is the 
physical absolute temperature of the signal source internal 
impedance or load impedance. 

The elements of the matrix ALc corresponding to the common 
mode noise waves produced by differential terminations are 
given by 
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where icΓ  is the common mode reflection coefficient of the 
differential signal source port or the differential  load port with 
the port number i, icdΓ  is the mode conversion reflection 
coefficient of the differential signal source port or the 
differential load port with the port number i, and Tai is the 
physical absolute temperature of the signal source internal 
impedance or load impedance. 

And finally, the elements of the matrix ALdc and ALdc
*, 

corresponding to the common-mode to differential-mode and 
differential-mode to common-mode noise waves conversion 
produced by differential terminations, are given by 
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where, as in (11) and (12), idΓ  is the differential mode 
reflection coefficient, icΓ  is the common mode reflection 
coefficient, icdΓ  of the differential signal source port or the 
differential load port with the port number i, idcΓ  and icdΓ  are 
the mode conversion reflection coefficients of the differential 
signal source port or the differential load port with the port 
number i, and Tai is the physical absolute temperature of the 
signal source internal impedance or the load impedance. 

 The reflection coefficients idΓ , icΓ , idcΓ  and icdΓ are 
discussed in Appendix and are given by (D3). 

 The diagonal elements of the matrix L
o
C  corresponding to 

the single-ended terminations are given by 
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where iΓ  is the reflection coefficient of the single-ended signal 
source port or the single-ended load port with the port number 
i, and Tai is the physical absolute temperature of the signal 
source internal impedance or load impedance. 
 In the case of the complex reference impedance ZR of the 
termination ports, we have 
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The interpretation of both terms in (12) is very obvious. The 

first term is related to noise generated in the signal sources and 
loads connected to the input and output ports of the multiport 
network, while the second term is related to the noise generated 
in the network. In the case when all external noise sources are 
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equal to zero, CL = 0, (for example, when the temperature of 
all terminations equals 0 K) and the first term in (12) vanishes. 
Similarly, a case of noiseless amplifier corresponds to CS = 0, 
and the second term in (12) vanishes. 

 Using (15), the equation (12) may be written in the form 
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in which T0 = 290 K is reference noise temperature assumed 
common to all input ports of the network. 
 

III. DIFFERENTIAL NOISE FIGURE OF MIXED-MODE 
MULTIPORT NETWORKS 

 

In the definition of two-port network noise figure it is 
assumed that the termination of the output port is noiseless or 
in other words that the definition does not include noise 
generated in the output load [13]. In the definition of the noise 
figure of the multiport network we use the same convention 
that there is not noise source located in the load of the output 
port. 

 With such definition of the noise figure, we can write the 
differential noise figure of a multiport network as 
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where δl is a vector whose elements are all zeros except a 1 in 
position l and l is the network output port number. 

 

IV. DIFFERENTIAL SIGNAL TO NOISE DEGRADATION FACTOR 
OF MIXED-MODE MULTIPORT NETWORKS 

 

In general case the signal-to-noise ratio degradation is not 
equal to the noise figure.  

Assuming that i is the number of the input port of the signal 
channel and l is the port number of the output port of the 
multiport, than the output signal power density entering the 
load at port l is 
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where the matrix 
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δl is a vector whose elements are all zeros except a 1 in 
position l and ins  is the input signal power density. 

 Because the power density of noise entering the signal 
channel input port is 
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and the total output noise power density in output port l is 
given by 
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where 
o
A  is the incident noise correlation matrix for the actual 

network, than the degradation factor of the signal-to-noise ratio 
is given by 
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When the signal source is matched (27) simplifies to 
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This relation is different to (22) which determines the noise 

figure of a mixed-mode multiport network because in (28) the 
total output noise density of the network is divided by the 
output noise coming from the incident noise in the signal 
channel only. In (22) determining F, the total output noise is 
divided by the output noise due to all the incident noise in all 
input pots of the network. 

 In the case when all terminations of the network are matched 
(28) reduces to 
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the noise waves. 

V. CONCLUSION 
The noise analysis concept presented in this paper is 

applicable to differential multiport networks with mixed mode, 
differential- and common-mode ports as well as with single-
ended ports. Therefore it is applicable to most networks 
occurring in microwave practice, in particular, to differential 
amplifiers. The set of parameters which can be calculated by 
the method includes the differential noise figure and signal to 
noise degradation factor of multiports with mixed-mode portsa 
and single-ended ports.  

APPENDIX 
REFLECTION COEFFICIENT MATRIX OF THE DIFFERENTIAL LOAD 

 Figure 1 illustrates a passive single-ended two-port network 
considered as the differential load. 

e  
Fig. 1. Passive single-ended two-port considered  

as a differential load 

Matrix equation describing the differential load in the mixed-
mode pseudoscattering matrix and mixed-mode pseudowave 
domain is 
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where 
oo

 and ba are vectors of, respectively, incident and 
reflected mixed-mode pseudowaves at the port of the 

differential load, and L
o
Γ  is the mixed-mode reflection 

coefficient matrix of the load. In (D2), ΓLd is the differential-
mode pseudowave reflection coefficient, ΓLc is the common-
mode pseudowave reflection coefficient, while ΓLdc and ΓLcd 
are the mode-coupling reflection coefficients. 

 Assuming now that the reference impedances of the single 
ended ports of a mixed mode load are the same: are the same: 
ZR1 = ZR2 = ZR, and that the differential-mode and the common-
mode reference impedances of the mixed-mode signal source 
ports satisfy relations: ZRd = 2 ZR, ZRc = ZR/2 and in 
consequence that [2] 
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we get equation describing the differential load 
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In (D7) Sij, i,j = 1, 2, are standard, single–ended scattering 

parameters of the differential load. 
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