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and Customized Networking
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Abstract—Software-Defined Networking (SDN) is seen as the
most promising networking technology today. The spread of
a new technology depends on the acceptance of the engineers
implementing the networks. Typically, when engineers start the
conceptualization of new network devices that work with a new
paradigm, and that should provide expected business values,
they must identify and utilize technical enablers for the defined
business use cases. This paper tries to summarize essential SDN
applications and defines the technical enablers for advanced
and efficient SDN networking. To this end, we identify the core
technical mechanisms, expecting to provide a useful analysis for
the design of new SDN networks.
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I. INTRODUCTION

S INCE its appearance, the SDN paradigm has taken a lot of
interest by the community of network researchers and de-

signers. The main idea of SDN is to decouple the control plane
from the data plane and to centralize control and management
functions of a network. As a result the control plane can be
implemented purely in software, and the data plane can be
realized through relatively simple and inexpensive hardware.
Such a network architecture promises better flexibility in
network services provisioning, better accessibility to low-level
network functions towards new innovative networks. One of
the main drivers for SDN deployments is the significant spread
of cloud computing and the resulting need for cooperation
between new applications and network control functions.

At present the most popular SDN approach is based on
OpenFlow [1]. It is defined and promoted by the Open
Networking Foundation (ONF), in which major manufacturers
and Internet related companies are involved.

ONF specifies the internals of the OpenFlow switch as well
as the interactions between the network controller and the
switches. The switches operate on data flows, not on individual
IP packets. The SDN control software works on a central
server and defines predefined matching rules for the OpenFlow
switches in a dynamic way. This approach allows direct access
and manipulation of the forwarding plane on both physical
and virtual (hypervisor-based) switches. Most commercial
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SDN switches available today (e.g. from BigSwitch, Hewlett-
Packard, Brocade, IBM, NEC, Pronto, Juniper, Pica8) support
OpenFlow in addition to traditional operation and protocols.
The controllers (e.g. NOX, POX, Beacon) are based on generic
high performance server platforms and typically are offered
as Open Source software. The principles of their creation and
evolution were: to have a framework for network application
development, and to provide an experimentation environment
that will be verified by community working with the open
source.

There are other technologies proposed or considered as ap-
plicable to SDN: ForCES [2], Path Computation Element [3],
BGP-TE [4], Application Layer Traffic Optimization (ALTO)
[5]. These technologies are rather complementary but in some
cases they are also mutually exclusive. For example, the
goal of the Software Driven Network Protocol (SDNP) IETF
working group is to enable existing control planes to become
more adaptable to application requirements. This leads to rapid
and reliable configuration changes between applications and
network control planes. In the IETF draft, "Software Driven
Networks: Use Cases and Framework" [6], the authors claim
that SDNP is also useful to OpenFlow type networks, since
SDNP provides the interface between applications and control
planes implemented in OpenFlow controllers. Another IETF
draft "Use Cases for ALTO with Software Defined Networks"
[7] proposes two (vertical and horizontal) architectures for
integration with SDN infrastructure. The Vertical Architecture
assumes placement of ALTO server over SDN server, the
Horizontal Architecture assumes integration of those servers,
in order to simplify their interactions. The Vertical Architec-
ture allows better division, management, flexibility, privacy
control and long-term evolution of the network. ALTO is the
application layer traffic optimization, which is defined by IETF
ALTO Working Group. The IETF drafts mentioned above
are working documents, which present ideas, not matured
solutions. We cite them to point these ideas and related use
cases for SDN. A comprehensive review on SDN definition,
and the proposed technologies for SDN, is given in [8].

Variances in understanding the SDN concept result from
different approaches to the complexity of forwarding network
elements. One approach is to build a layer over existing, and
typically complex network devices in order to offer centralized
control of network services or to enable interactions between
the applications and the network, e.g. using the Interface to
the Routing System Framework (I2RS) [9]. One position is
that SDN should be built over traditional switches [10] and
the authors outline how SDN networks can use I2RS. An
opposite approach is to use simple network switches, which are
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capable of effectively forwarding incoming packets or flows,
and to control them through cooperation with a central server,
which contains all network control logic. Other approaches
vary between these two extremes, e.g. by adding fast reroute
control logic to the new simple switches, or handling "short-
lived" flows in switches to mitigate flow setup delay and
controller overhead. In the book [11], the authors explore the
emerging concepts and protocols for SDN. They show their
variety and assess them from a pragmatic perspective, opting
for building SDN over traditional switches.

Recently just proposed technology, named Protocol Obliv-
ious Forwarding (POF) [12], is similar to OpenFlow. POF
offers more flexibility for switch programming than OpenFlow,
and in the future can compete with it in SDN deployments.
OpenFlow and POF specify the internals of the switch and
its interface to the network controller. Other above-mentioned
technologies define interfaces for network applications and
interactions between networks. None of these technologies
deals with control mechanisms of the network, which are
supposed to work on the central network controller.

A detailed presentation and analysis of the SDN technolo-
gies mentioned above could be a subject of a stand-alone
paper, but they are out of the scope of this article. In this work,
we try to highlight essential network control mechanisms,
perceiving them as enablers of new SDN functionalities.
Before we outline the known SDN use cases, and we highlight
relating functionalities.

II. SDN USE CASES

SDN comes with the promise of enabling new network ser-
vices only through the way in which the network is operated.
From the technical point of view two main properties should
be emphasized: firstly, the already mentioned flow forwarding
ability, which can be managed for each individual flow; and
secondly the centralized approach to network control, which
means that in a single place all information about all network
nodes, links, and traffic is available. Consequently the basic
networking operations can and should be optimized in a cen-
tralized manner, what is difficult to achieve in today networks,
because of multiple limitations with distributed control. Most
importantly, SDN enables the creation of highly customized
networks, which are tailored to meet specific needs.

Network providers and devices vendors expecting to benefit
from SDN published many SDN use cases. The proposed ideas
are mostly about creating business profits when applying SDN
to their networks, rather than about technical issues. These
ideas are typically discussed in the context of the type of SDN
owner, i.e.: an enterprise, a content provider, a cloud services
provider and a network provider. It happens that the same
technical idea is presented as several use cases, but differs in
the ownership of the network and its business perspective.

Common SDN use cases point to where this new network
concept can be beneficial. Analyzing these, we can distinguish
five domains of evident benefits: internal networks for big
data centers, transmission between big data centers, access
provisioning for data centers, network administration, and
network security enforcement.

While building big multi-tenant data centers, SDN facili-
tates network orchestration with respect to workload changes,
allowing a higher level of personalization services, traffic
steering and service insertion. Inside these data centers, the
load should be balanced for both the servers and their com-
munication paths. The administrator should be able to quickly
locate a network failure and to protect other traffic in such
situations. Furthermore, for the ease of network management,
data centers typically contain virtual switches and firewalls.
Therefore, it may be desirable to have virtual patch panels for
manipulation of virtual links, which can be managed remotely
in a centralized manner, without the need of manual cross-
swiching of physical links.

Creating an infrastructure for cloud computing, adminis-
trators have to create and to connect virtual servers through
secured access, requiring both physical and virtual firewalls.
Like in data centers, contents of huge data repositories need
to be balanced and moved between remote localizations.
Combining SDN and virtualization, it is possible to provide
network infrastructure as a service, which can be beneficial for
research, experimentation or test purposes and consequently
to provide full network virtualization that allows customers to
connect their own Network Operating System to the logical
switches that are running on top of the physical infrastructure.
In fact, SDN enables different network abstraction levels to
the customers. The IETF draft "Software Defined Networks
Use Case for Virtual Connection and Network on Demand"
[13] points to another important idea: to build application
services over heterogeneous infrastructures of physical and
virtual networks. The SDN approach supports the provision
of the two services (i.e. Virtual Connectivity and Network on
Demand) in an automated way without delays related to human
interactions with network devices.

Providing access to data center services is desirable to
connect with a source of requested content or requested
service, regardless of its IP address. An SDN controller (SC)
can easily redirect incoming content/service requests on the
fly. Also the controller can provide rendezvous services [14],
which benefit from central information about their location to
effectively deliver services such as Content Delivery Networks
(CDN), p2p systems, and data center applications. In this
context, the "Content Distribution Network Interconnection
(CDNI) Problem" is introduced in RFC 6707 [15]. CDNI
defines, among others, the Request Routing Interface between
Upstream CDN and Downstream SDN. An integration of
OpenFlow into CDNI is discussed in [16].

Due to the centralized control of network resources, access
can be offered with individual QoS parameters. SDN has
the ability to guarantee end-to-end bandwidth requirements
between different data centers [17]. The same counts for an
enterprise deploying a private WAN by using SDN. When pro-
visioning intra-data center interconnectivity, SDN can provide
dynamic traffic steering with QoS guarantees.

Another common need is calendaring of huge data transfers
between data centers, like remote backups, multimedia content
distributions or virtual hosts displacement (from one to other
data center). Consequently, demand placement, bandwidth cal-
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endaring, and bandwidth probing are also expected functions
of SDNs.

Network administration is still a complex, resource intensive
and error prone work. Hence, network operators are looking
for more reliable solutions at reduced administration cost,
while users interests are contrary: they expect fast reconfigura-
tion of network resources on their demand/needs. For example,
a high mobility of users and frequent changes of computation
services are observed in campus networks.

SDN promises simpler administration with more automatic
functionalities. First of all, the controller provides this abil-
ity to automatically redirect and distribute traffic, based on
network owner policies. Next based on extensive network
statistics, SDN enables efficient energy functions. For instance,
exploiting information of port and switch use, a university
could dynamically turn down segments of the network across
the campus during the night or in the period when students
leave for vacation or faculty for holidays. Moreover the
centralized control enables more efficient flow distribution,
leading to higher customer satisfaction and better utilization
of network resources.

Traditional network security concepts typically lack the
global view of network activities. This view is very beneficial
for effective attack or misbehavior detection and the imple-
mentation of proper counter measurements. SDN can fill this
gap and enable a comprehensive security environment with
individual, fine-grained policy definition and security mea-
sures, the implementation of effective countermeasures plus
pro-active fault and attack prevention schemes. For instance,
firewall and intrusion detection systems (IDS) can be easily
placed at strategic positions within the network, i.e. on ingress
switches, even their location being dynamically adapted in
case of security incidents or network re-configurations. The
detailed statistics of the whole network support also forensics
and attack mitigation actions.

However, it has to be noted that SDN itself creates ad-
ditional attack vectors, which are non-existent in traditional
networks. For instance, the data exchange between switches
and the centralized controller could potentially cause a denial
of service attack simply by a huge number of distinct and
previously unknown flows.

Table I summarizes the key requirements to enable the
described use cases. Expected advantages of SDN, that are
pointed in the analyzed use cases, are:

• faster provisioning of network access and services,
• possibility of cooperation between cloud applications and

network control applications,
• improved security,
• lower investment and operational costs for network own-

ers,
• better load balancing,
• possibility of automatic energy savings control.

III. SDN FROM AN IMPLEMENTATION PERSPECTIVE

The analysis of SDN use cases and applications leads to the
conclusion that the benefits from SDN are based on inexpen-
sive flow switching that is combined together with flexible,

TABLE I
SUMMARY OF SDN USE CASES DOMAIN AND RELATED NEEDS

Domains of SDN use
cases

Key needs from the SDN controller

Internal networks for
data centers

Traffic steering and service insertion, e.g. via
virtual switches & Load balancing

Transmission between
data centers

Load balancing & Bandwidth probing and
calendaring

Access provisioning Virtual connections and networks on demand
& Support for content delivery and distribution
& Dynamic QoS reservations

Network administration Traffic distribution according to network owner
policies & Energy saving

Security Global view of network activities & Support
for attack prevention schemes

centralized control and management of simplified switches.
The OpenFlow technology, which supports well these con-
cepts, is a good base for SDN projects and deployments. An
OpenFlow cloud of switches with its controller belongs to
a network owner. The owner can have many such networks,
which are cross connected to form a bigger infrastructure. On
the top of the OpenFlow controllers, other technologies like
ALTO could be developed.

Even though the SDN principle is to centralize control
and management functionality, the switches should embed a
simple control element to process operations that cannot be
performed remotely or that should be processed locally to
achieve reasonable response times. The switch should have
a local intelligence that support auto-configuration or may
offer Plug&Play functionality. The local intelligence should
process neighbor discovery and keep-alive/failure detection
autonomously (without stimulations of a network controller).
Moreover, if there are signal amplifiers or retransmitters on
connection lines, a simple Hello protocol may be required
for this purpose. Such a protocol is also needed, if wireless
links are in use. To achieve carrier-grade fast (sub 50 ms)
recovery, this mechanism needs to be implemented locally on
the switch too. There are also other functionalities that would
benefit from local intelligence, e.g. data aggregation for remote
monitoring or data analysis for distributed intrusion detection.
It needs to be noted that all possible local extensions need to be
implemented with low complexity. Whereas, high complexity
tasks should be performed on the central controller, they
are: network topology tracking and mapping, routing, traffic
engineering and computing forwarding tables for the switches,
calculating parameters for achievable QoS, admission control,
administration and management of the network, or inter-
operation with legacy protocols and applications (Business
Support Systems and Operation Support Systems).

To this end, the SC has to maintain information about the
controlled network, to offer services for external applications,
and to perform a set of tasks in order to operate the network
efficiently. Therefore, SC databases store information gath-
ered from network devices and information assembled from
external management requests. We distinguish between four
principal databases and present their current implementation
status in current distributions of popular open-source SCs in



302 J. WYTRĘBOWICZ, T. RIES, KHOA TRUONG DINH, S. KUKLIŃSKI

TABLE II
PRINCIPAL DATABASES AND THEIR PRESENCE IN SELECTED SCS

Principal DB NOX POX Beacon F & Ha Trema
Topology X X X X X
Usage History - - X X X
ACLs X X - X -
Usage Plan - X X X -
a Floodlight and Hydrogen

TABLE III
SC PRINCIPAL TASKS AND THEIR SUPPORT IN SELECTED SCS

Proposed SC tasks Hydrogen Trema Othersa

Network discovery X X X
Statistics collection X X X
Path evaluation for flows X - -
Access control X - X
QoS path attribution X - -
Fault detection & Rerouting X - X
Energy savings control - - -
Network sanity checking X - -
a NOX, POX, Beacon, Floodlight

Table II. For the comparison, we selected: NOX [18], POX
[19], Beacon [20], Floodlight [21], Trema [22] controllers and
the Hydrogen platform proposed by the Opendaylight project
[23].

The Topology database contains a description of all network
links, both active and inactive, and characteristics of all
external and internal interfaces. The Usage History database
collects data of link and queue usage of every switch port. The
ACL database contains access control lists for every ingress
network interface. Finally, the Usage Plan registers the planned
link usage based on queue priorities.

In addition to maintaining the mentioned databases, SC has
to calculate and store network control data, i.e.: unicast routing
data, multicast routing data, QoS parameters for every link and
every offered path. In small networks, the set of offered paths
may be equal to the set of all possible paths, while in large
networks, the offered paths may be selected from the set of all
possible paths in a way of satisfying optimal routing needs.

Further services like: availability checking for a flow of
demanded QoS parameters, reporting on flows’ activities, flow
calendaring with QoS parameters, and provisioning of virtual
network elements are expected to be provided by the SC.
Therefore, the SC has to perform at least the tasks listed
in Table III to effectively control dependent switches. As
the table shows, most SCs show a similar set of supported
tasks. However it should be noticed, that there are functional
differences between their implementations on different SCs.

The network operator needs to define configuration poli-
cies for every SC task and for every service offered by
the controller. Such policies define constrains, warnings and
alarms related to the business prerequisites of the owner.
New applications supporting management of such policies (i.e.
administration of SDN networks) are needed.

Though some of the mentioned services and tasks are
offered and performed in traditional IP networks too, the
SDN paradigm has the potential to enable better functionality
and effectiveness. From the technical point of view we can
distinguish the mechanisms that are crucial to enable SC
services, and tasks which are essential to vivify the SDN use
cases presented above. We discuss these mechanisms in the
subsequent chapter.

IV. CORE SDN CONTROLLER MECHANISMS

In the previous section we described use cases, which
are indispensable to today’s network operations. Based on
these, we derive the core SC mechanisms, which form the
base for autonomous network operations. These can be used
by dedicated network applications to offer further advanced
functionalities for the network owner, for providers of network
services and for users. Technically it is possible to deploy
network applications (or their elements) directly on the SC.
However, for security and reliability reasons, the network
owner will limit such deployment, allowing only for appli-
cations supporting network management and provisioning of
network services.

Even though the expected SDN advantages are commonly
repeated, and SDN use cases are known, there is still a lack
of understanding of the core operations of a SC: which mech-
anisms should be implemented in the SC? Which mechanisms
should be implemented on application level of the controller or
even outside the controller, i.e. on the switches or on special-
ized application controllers? For our review, we take only SDN
related functionality into consideration, which are independent
from the implementation platform, i.e. the controller software.
All issues related to such a platform, like software updates,
internal data representation and communication security, are
intentionally omitted.

Routing is neither single nor simple task, and it needs a
comment here. Routing means collecting and processing data,
to find a path to a given destination (unicast) or to a given
source (multicast). In the case of routing via internal links of
an SDN cloud, the SC can relatively easy do this job, as it
has always all required information and even one thread or
process can do the calculations. Hence, internal routing can
be considered as SC duty. However, in the case of routing
via border interfaces of an SDN cloud, the job is much more
complex. Therefore, support of existing routing protocols, like
OSPF, IS-IS or BGP, is required on every border interface. A
network application can then be hosted on a separate server to
provide external routing for an SDN cloud. Such an approach
has been successfully deployed by Google in their B4 SDN
network, which is a private WAN connecting data centers
across the planet [24].

The subsequent description is an attempt to define essential
core controller functionalities and their placement/relations to
each other:

1) Access Control for Flows (AC4F),
2) Multipath Unicast and Anycast Routing for QoS and

Load Balancing Control (MPR),
3) Multicast Routing for QoS Control (MCR),
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Fig. 1. Interactions between SC mechanisms and the controlled network

4) Path Selection for End-to-End QoS Flows (PS4Q),
5) Transactions for Flow calendaring (T4C),
6) Energy Savings Control (ESC),
7) Cooperation with other SDN controllers (C2C).
For each mechanism we provide its aim and related func-

tions. To this end, we have analyzed the above-mentioned
controller platforms: NOX, POX, Beacon, Floodlight, Trema
and Hydrogen, and we present their implementation status in
the individual mechanism’s descriptions. Fig. 1 depicts inter-
actions between SC mechanisms and the controlled network;
it points also usage of the main databases of the controller.

A. Access Control for Flows

Especially in critical infrastructures, there is a need of
dynamically controlling access rights of appearing flows and
to direct them according to policies but also according to
observed features and flow behavior. Access Control for Flows
mechanism (AC4F) cooperates with SDN switches, AAA
servers, firewalls, and with the network administrator via con-
figuration files. AC4F is able to evaluate access requests and
to recognize users of regular flows, thus to apply predefined
rules for them, e.g. to direct a flow via a path of requested
bandwidth or via pre-selected middleboxes (like firewalls,
intrusion detection systems, WAN optimizers). AC4F queries
the path selection mechanism (PS4Q, see below), to find a

path for every non-rejected new flow. AC4F directly operates
on two SC databases. It uses and can update the access control
lists (ACLs) for every ingress network interface. It writes to
the history of link usage and queue usage of every switch port.

In traditional IP networks, switches have access control lists,
and routers have packet filters. The central AC4F mechanism
can provide better functionality due to on-line cooperation
with AAA servers, firewalls, IDSs, WAN optimizers, which
can work as local or remote applications. AC4F can deliver
aggregated and statistical data about flows in the network. It
can also process admission rules related to events observed
on remote points of the network (e.g. load incoming on all
border interfaces and originated from, or designated to, a
given network can have a defined limit). AC4F can support
also automatic (i.e. fast) provisioning of network services,
according to predefined management rules.

AC4F provides essential services for the SDN use cases that
are related to access provisioning.

The use cases should be implemented as control applica-
tions. However, AC4F has to support the binding between new
flows and their preprogrammed (on demand) virtual connec-
tions and networks. Similarly, AC4F has to support services for
content delivery and distribution, by recognizing and binding
appearing connection request with preprogrammed destination
addresses.
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As a basic mechanism, admission control is already pro-
vided in most of the existing controllers. The Floodlight
controller has a firewall module, which is used to apply ACL
rules to allow/deny traffic based on a specified match. In
the NOX and POX controllers, the access control mechanism
is also provided to check whether a new host/user or flow
is added to the network. However, we could not find this
mechanism in Beacon and Trema controllers, which has only
the ability to set priorities for new flows by setting VLAN
tag, and to define different paths for the flows. Hydrogen
controller provides user authorization mechanism, and gives
access for user flows. Moreover, BGP protocol has also
been implemented in this controller to provide an enhanced
mechanism for access control.

B. Multipath Unicast and Anycast Routing for QoS and Load
Balancing Control

Multipath Unicast and Anycast Routing for QoS and Load
Balancing Control (MPR) is supposed to build and update a
routing database for unicast and anycast flows. The multipath
approach gives failover paths and supports load balancing. For
every pair of border interfaces, possible paths are analyzed and
relevant paths are selected to satisfy QoS and load policies.
MPR is activated by every topology change in the network,
i.e. activation or deactivation of an interface or a switch (due
to a failure or to an energy saving action). Moreover, it checks
periodically the network load, and if need be, it recalculates
paths’ parameters that are stored in the routing database.

MPR maintains the network topology database, thus it
performs network topology discovery. Depending on the im-
plementation, topology discovery can be considered as a
separate SC submodule. In that case, such submodule should
fire the processing of MPR every time a topology change is
discovered.

MPR calculates paths and estimates their QoS parameters.
Given by the global topology view, the controller has the
ability to determine the best path for incoming flows. The
controller is able to consider relative priorities of all paths and
allocate network resources efficiently. This mechanism ensures
that switches don’t compete for the best path after a link
failure. In traditional IP networks, routers build appropriate
data structures using routing protocols, and layer 2 switches
operate Spanning Tree Protocols. The multipath processing is
limited. Most deployments do not allow for load balancing,
and secondary paths are calculated after a failure.

While MPR can do routing calculations itself for internal
flows, flows terminating outside the network require informa-
tion distributed by legacy routing protocols. For that reason,
cooperation with related control applications (which maintain
the legacy routing protocols on boarding interfaces of the net-
work) is required. Moreover, the applications have to distribute
information on destinations reachability, for which they require
MPR to provide relevant information.

All analyzed controllers perform topology discovery. Flood-
light and POX have a simple load balancer for TCP and UDP
flows. Incoming flows for a given service can be randomly
redirected to one of the known servers – the destination IP

address is substituted appropriately. Trema doesn’t provide
full load balancing functionality. Provided load balancing can
be used only in the simulation tests, and cannot work in
the real network environment. Hydrogen platform has the
Affinity Metadata Service (still under development) to support
load balancing. This service operates on variables: Affinity
Identifier, Group, Link, and Attribute. The Affinity Attribute
describes the network properties that are assigned to Affinity
Link to meet workload performance. The service has capability
to isolate traffic to be forwarded using separated physical links
or paths not shared by other traffic. We haven’t seen this
mechanism implemented in other controllers.

C. Multicast Routing for QoS Control

Especially multimedia content distribution requires mul-
ticast data transmission based on given QoS requirements.
Hence, the aim of the Multicast Routing for QoS Control
(MCR) mechanism is to build and update the routing database
for multicast streams. The database is updated for every
multicast stream and for every change in the set of the
stream receivers. Based on this information, MCR calculates
the distribution paths individually per stream trying to satisfy
policy-defined QoS parameters. The multicast routing policies
are supposed to be altered by the network administrator and
by authorized network applications.

For SDN-internal multicast streams, MCR can do routing
calculations itself. To transport the streams via borders of the
network, information distributed by legacy multicast routing
protocols is required. Therefore, a cooperation with related
control applications, that maintain the legacy multicast routing
protocols on boarding interfaces of the network, is required.
Because of the need to distribute information on sources
reachability, as well as on possible transits for external sources,
MCR has to offer the required information to the applications.

Most OpenFlow switches already support multicast mecha-
nisms by pushing packets/flows out of multiple ports. However
the analyzed SDN controllers do not have the capability to
define individual paths for a multicast stream satisfying QoS
requirements. The only exception is Hydrogen, which allows
binding QoS parameters to multicast streams using Affinity
Attributes.

D. Path Selection for End-to-End QoS Flows

Based on given policies, the aim of the path selection
mechanism (PS4Q) is to satisfy a requested set of QoS
parameters and to select end-to-end paths. The selection is
performed using the data calculated by either the multipath
routing mechanism or the multicast routing mechanism. PS4Q
is demand triggered by the following mechanisms: Access
Control for New Flows (AC4F), Transactions for Flow cal-
endaring (T4C), and Energy Savings Control (ESC).

Moreover it supports dynamic flow rerouting in case of link
failures or in case of network application request. PS4Q keeps
track of the bindings between flows and paths and cooperates
with AC4F, T4C, and with SDN switches. It updates their
forwarding tables and also processes failure alerts from them.
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Processing data for switch forwarding tables is the indis-
pensable function for every IP router and Ethernet switch.
The centralized PS4Q mechanism simplifies the cooperation
with other mechanisms (T4C, ESC), and cooperation with
management applications. The clue for enabling the SDN use
cases, as discussed earlier, is the interface for network control
and management applications. The applications can support:
traffic steering and service insertion in big multi-tenant data
centers, virtual patch panels for virtual switches and firewalls,
Content Delivery Network services, load balance for both the
servers and their communication paths, and so on.

As we mentioned above, the Beacon controller has the
ability to set priorities to incoming flows. The POX controller
can additionally add a VLAN tag to the packet header to set
the priority, thus enabling QoS for end-to-end paths. The PS4Q
mechanism is not implemented in NOX, Trema, and Floodlight
controllers.

The Affinity Metadata Service (Hydrogen controller) gives
the ability to select/isolate a path for a flow with QoS
parameters. Moreover, the Defense4All Service proposed for
Hydrogen is also able to redirect the traffic, what can be
applied in case of anomaly detection or attack. This service
is responsible for configuring the network, in order to prevent
system against suspicious traffic, and is also responsible for
restoring the network to original configuration.

E. Transactions for Flow Calendaring

The aim of flow calendaring (T4C) is to enable planning
of big data transfers and to enable throughput reservation for
these. The supposed throughput availability can be checked
for the required time period. Calendaring adjustments should
be performed by the network administrator and authorized
network applications only. In traditional IP networks, admin-
istrators process such services manually.

T4C has to process information from two SC databases: the
ACLs for every ingress network interface, and the network
topology and characteristics of all external and internal inter-
faces. T4C can also consider data from the link usage history
database, and signalize possible future conflicts of links usage.
Next it alters the planned link usage database.

There is no bandwidth reservation mechanism in the ana-
lyzed controller distributions.

F. Energy Savings Control

Not only in wireless ad-hoc or sensor networks, efficient
energy saving plays an important role for a reliable and durable
operation. Saving energy is basically an important aspect
for all network deployments, in order to reduce operational
costs. Typically in wired networks, the network administrator
defines energy savings policies and executes them by changing
configuration of network devices. The energy savings control
mechanism (ESC) may help the administrator by controlling
execution of a defined policy in an automatic way.

ESC needs to be embedded seamlessly into the general
picture. By cooperating with the PS4Q mechanism, it changes
paths for on-going flows by sending requests to PS4Q, preserv-
ing calendared flows that were scheduled by T4C. Furthermore

ESC needs the ability to switch on/off interfaces or devices
through direct communication with the network switches.

Though the OpenFlow protocol provides the ability manage
ports administratively (i.e., activate/deactivate), there are no
means to control the power of physical interfaces. The way of
doing this based on an energy saving policy is not available
in the above-mentioned controllers. Such a realization would
require extensions to the existing protocols in order to monitor
and control energy consumption.

Certainly, energy-saving does not stop at this point: topol-
ogy and routing optimisation have an impact on energy con-
sumption as well. For instance, parts of a redundant topology
could be turned of, as long as it is not required and SDN
may provide the required capabilities for such an intelligent
traffic engineering. In [25], Heller et al. argue that even
critical network components may be turned of or put in stand-
by if they are idle while still maintaining robustness and
performance of the network.

Today’s deployments widely use custom-made software
to provide remote power control on network devices and
interfaces. Therefore typically SNMP (Simple Network Man-
agement Protocol) or out of band communication channels
(e.g. via telephone modems to power supplies) is utilized.
As the available hardware and software for remote power
control can vary, communication with them would be better
managed by a control application and not directly by an SC
module. ESC having full access to the controller data bases
can efficiently compute desired power controls and switching
communication paths in advance.

G. Cooperation with Other SC

Until now, SDN has been mainly deployed as single network
domains, managed by one controller per network. Though
there are failover implementations based on multiple con-
trollers, it is basically only the master controller managing
one single domain. Such an approach may be acceptable for
small private networks, but big commercial networks, require
higher scalability and reliability. Therefore multi-controller-
multi-domain architectures are the logical consequence. A
well-engineered multi-controller deployment has also a strong
impact on the security of the network. The SDN controller
in a single-controller network is not only a single point of
failure but also the most interesting target for attackers. A
faulty or malicious controller can easily compromise the entire
network. Therefore, a multi-controller architecture, even only
for single domain networks, is essential to provide a higher
level of security of the SDN network.

The multi-controller requirements for reliability and for
scalability show many differences. In fact, high reliability can
be achieved by well-known solutions that are applied for fault-
tolerant computer system in data centers, i.e. redundant hard-
ware, software, and mechanisms solving consensus in a net-
work of unreliable processors, e.g. Raft [26]. These solutions
can be applied for SDN controllers and servers hosting control
applications. However, it is desired that redundant processes
set out stable states for mirroring and synchronization.
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In the case of providing scalability, the processes should
also set out stable states for full or partial synchronization
of their data structures and states. Even thought the aim of
synchronization is different, the way of providing it can be
the same. For that reason we propose a generic mechanism
for cooperation with other SCs.

For the above-mentioned reasons, SC should contain a
mechanism for cooperation with other controllers, so called
Controller-to-Controller (C2C) communication. Two kinds of
cooperation ought to be considered: between adjacent network
controllers, and between controllers that provide redundancy
for a given domain.

In single-domain networks, elastic distributed controller
architectures can be used to dynamically adapt to traffic
conditions by distributing the load across several controllers
[27]. However, as mentioned above, large-scale multi-domain
networks demand advanced intra-domain network manage-
ment. In the case of SDN, this means that the controllers
need to communicate with each other to improve the overall
network security and to allow end-to-end management [28].
In fact, all proposed mechanisms would benefit from C2C
communication and cooperation e.g. by extending path se-
lection mechanisms over multiple network domains. As these
operations require a high degree of information exchange, such
that the existing SC capabilities need to be extended in a way
that internal databases should be ready (entirely or partially)
for synchronization between controllers and enable storing and
processing data even for switches from other domains. Here,
known solutions for synchronization of distributed databases
can be applied. For these operations, dedicated policies need
to be in place or may be negotiated as part of the cooperation.
This is still the matter of future research.

To our knowledge, there is no mechanism for cooperation
with SCs in the distributions of the analyzed SDN controllers.

V. CONCLUSIONS

Most published SDN use cases highlight the multifaceted
areas of applications that exist for these kind of networks.
Many vendors already provide SDN switches and network
controllers and there are ambitious efforts to bring the required
technologies as RFC to IETF. However, SDN is still in the
early stage of its evolution, and at present a lot of concurrent
works are carried out to reach the maturity of existing SDN
technologies.

Indeed, Software Defined Networking shows huge potential
in development of innovative network services and applica-
tions. Flow forwarding together with the central control of
a cloud of simplified switches, promises lower CAPEX and
OPEX for network owners. For that reason we can expect
many developments on SDN controllers to support the growing
number of SDN deployments. Yet, several distinct controllers
have been developed, most of them with different features,
aligned to different needs. We hope that our work will help in
the definition of a common base of SDN controllers.

The paper summarizes the possible applications of SDN,
and exploits the advantages of this new network paradigm.

We have analyzed common needs and looked on their require-
ments from a technical implementation point of view, trying
to define the core mechanisms of an SDN controller and to
define the functional structure of the controller.

The proposed set of controller functionalities is essential for
both basic and advanced network operations for flexible and
customized networking. Depending on individual needs, these
mechanisms could be designed to be included on demand in
the network operation system. For that reason, the SC platform
should support loadable modules with standardized APIs. We
believe that the described mechanisms further enlarge the great
potential of Software Defined Networking and that they should
be included into all SCs.
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