Finding optimal frequency and spatial filters accompanying blind signal separation of\\ EEG data for SSVEP-based BCI
Abstract
Full Text:
PDFReferences
P. Comon, “Independent component analysis, A new concept?” Signal Processing, vol. 36, no. 3, pp. 287–314, 1994.
T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, M. J. McKeown, I. Iragui, and T. J. Sejnowski, “Removing Electroencephalographic aretfacts by blind source seperation,” Psychophysiology, vol. 37, no. 2, pp. 163–178, 2000.
F. Piccione, F. Giorgi, P. Tonin, K. Priftis, S. Giove, S. Silvoni, G. Palmas, and F. Beverina, “P300-based brain computer interface Reliability and performance in healthy and paralysed participants,” Clinical Neurophysiology, vol. 117, no. 3, pp. 531–537, 2006.
Y. Wang, Z. Zhang, X. Gao, and S. Gao, “Lead selection for SSVEPbased brain-computer interface.” in Proceedings of the 26th Annual International Conference of the IEEE EMBS, vol. 6, no. April 2016, San Francisco, CA, USA, 2004, pp. 4507–4510.
H. Bakardjian, T. Tanaka, and A. Cichocki, “Optimization of ssvep brain responses with application to eight-command brain–computer interface,” Neuroscience letters, vol. 469, no. 1, pp. 34–38, 2010.
M. Jukiewicz, M. Buchwald, and A. Cysewska-Sobusiak, “Usuwanie artefaktow z sygnalow sterujacych interfejsem mozg-komputer,” Poznan University of Technology Academic Journals. Electrical Engineering, no. 89, pp. 195–204, 2017.
A. Hyvarinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.
J.-F. Cardoso, “Infomax and maximum likelihood for blind source separation,” IEEE Signal processing letters, vol. 4, no. 4, pp. 112–114, 1997.
T.-W. Lee, M. Girolami, and T. J. Sejnowski, “Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources,” Neural computation, vol. 11, no. 2, pp. 417–441, 1999.
P. Martinez, H. Bakardjian, and A. Cichocki, “Fully online multicommand brain-computer interface with visual neurofeedback using ssvep paradigm,” Computational intelligence and neuroscience, vol. 2007, 2007.
M. Kolodziej, A. Majkowski, and R. J. Rak, “Automatic detection of ssvep using independent component analysis,” in Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2016. IEEE, 2016, pp. 196–201.
A. Kachenoura, L. Albera, L. Senhadji, and P. Comon, “ICA: A potential tool for BCI systems,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 57–68, 2008.
D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, “Spatial filter selection for EEG-based communication,” Electroencephalography and Clinical Neurophysiology, vol. 103, no. 3, pp. 386–394, 1997.
J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller, “Eegbased communication: improved accuracy by response verification,” IEEE transactions on Rehabilitation Engineering, vol. 6, no. 3, pp. 326–333, 1998.
H. Jasper, “Report of the committee on methods of clinical examination in electroencephalography,” Electroencephalogr Clin Neurophysiol, vol. 10, pp. 370–375, 1958.
A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. Hamalainen, “MEG and EEG data analysis with MNE-Python,” Frontiers in Neuroscience, vol. 7, pp. 1–13, 2013.
A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, and M. S. Hamalainen, “MNE software for processing MEG and EEG data,” NeuroImage, vol. 86, pp. 446–460, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2013.10.027
Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based on canonical correlation analysis for ssvep-based bcis,” Biomedical Engineering, IEEE Transactions on, vol. 53, no. 12, pp. 2610–2614, 2006.
G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, “An online multi-channel ssvep-based brain–computer interface using a canonical correlation analysis method,” Journal of neural engineering, vol. 6, no. 4, p. 046002, 2009.
Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Frequency recognition in ssvep-based bci using multiset canonical correlation analysis,” International journal of neural systems, vol. 24, no. 04, p. 1450013, 2014.
Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based on canonical correlation analysis for ssvep-based bcis,” IEEE transactions on biomedical engineering, vol. 54, no. 6, pp. 1172–1176, 2007.
S.-i. Amari, A. Cichocki, and H. H. Yang, “A new learning algorithm for blind signal separation,” in Advances in neural information processing systems, 1996, pp. 757–763.
A. Cichocki and S.-i. Amari, Adaptive blind signal and image processing: learning algorithms and applications. John Wiley & Sons, 2002, vol. 1.
S. Choi, A. Cichocki, H.-M. Park, and S.-Y. Lee, “Blind source separation and independent component analysis: A review,” Neural Information Processing-Letters and Reviews, vol. 6, no. 1, pp. 1–57, 2005.
Refbacks
- There are currently no refbacks.
International Journal of Electronics and Telecommunications
is a periodical of Electronics and Telecommunications Committee
of Polish Academy of Sciences
eISSN: 2300-1933