ADDP: Anomaly Detection based on Denoising Pretraining
Abstract
Acquiring labels in anomaly detection tasks is expensive and challenging. Therefore, as an effective way to improve efficiency, pretraining is widely used in anomaly detection models, which enriches the model's representation capabilities, thereby enhancing both performance and efficiency in anomaly detection. In most pretraining methods, the decoder is typically randomly initialized. Drawing inspiration from the diffusion model, this paper proposed to use denoising as a task to pretrain the decoder in anomaly detection, which is trained to reconstruct the original noise-free input. Denoising requires the model to learn the structure, patterns, and related features of the data, particularly when training samples are limited. This paper explored two approaches on anomaly detection: simultaneous denoising pretraining for encoder and decoder, denoising pretraining for only decoder. Experimental results demonstrate the effectiveness of this method on improving model’s performance. Particularly, when the number of samples is limited, the improvement is more pronounced.References
T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, "Deep Learning for Medical Anomaly Detection – A Survey," ACM Comput. Surv., vol. 54, no. 7, Jul. 2021. https://doi.org/10.1145/3464423
P. Szolovits, R. S. Patil, and W. B. Schwartz, "Artificial Intelligence in Medical Diagnosis," Ann. Intern. Med., vol. 108, no. 1, pp. 80–87, 1988. https://doi.org/10.7326/0003-4819-108-1-80
Y. Qiu, F. Lin, W. Chen, and M. Xu, "Pre-training in Medical Data: A Survey," Machine Intelligence Research, vol. 20, no. 2, pp. 147-179, Apr. 2023. https://doi.org/10.1007/s11633-022-1382-8
G. E. Hinton and R. S. Zemel, "Autoencoders, Minimum Description Length and Helmholtz Free Energy," in Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS'93, Denver, Colorado, pp. 3-10. 1993
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative Adversarial Networks," Commun. ACM, vol. 63, no. 11, pp. 139-144, Nov. 2020. https://doi.org/10.1145/3422622
Lu, Yuchen, and Peng Xu. "Anomaly detection for skin disease images using variational autoencoder." arXiv preprint arXiv:1807.01349 (2018). https://doi.org/10.48550/arXiv.1807.01349
Zimmerer, David, et al. "Context-encoding variational autoencoder for unsupervised anomaly detection." arXiv preprint arXiv:1812.05941 (2018). https://doi.org/10.48550/arXiv.1812.05941
H. Uzunova, S. Schultz, H. Handels, and J. Ehrhardt, "Unsupervised Pathology Detection in Medical Images Using Conditional Variational Autoencoders," International Journal of Computer Assisted Radiology and Surgery, vol. 14, no. 3, pp. 451-461, Mar. 2019. https://doi.org/10.1007/s11548-018-1898-0
Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G., & Schmidt-Erfurth, U. (2019). f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 54, 30-44. https://doi.org/10.1016/j.media.2019.01.010
A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks," Nature, vol. 542, no. 7639, pp. 115-118, Feb. 2017. https://doi.org/10.1038/nature21056
J. Turner, A. Page, T. Mohsenin, and T. Oates, "Deep Belief Networks used on High Resolution Multichannel Electroencephalography Data for Seizure Detection," arXiv:1708.08430, 2017. https://arxiv.org/abs/1708.08430
G. Wang, W. Li, S. Ourselin, T. Vercauteren, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer Verlag, 2018), vol. 10670 LNCS, pp. 178-190. https://doi.org/10.1007/978-3-319-75238-9_16
P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. "Extracting and composing robust features with denoising autoencoders." In Proceedings of the 25th international conference on Machine learning, pp. 1096-1103. 2008. https://doi.org/10.1145/1390156.1390294
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion," Journal of Machine Learning Research, vol. 11, no. 110, pp. 3371-3408, 2010. https://dl.acm.org/doi/10.5555/1756006.1953039
Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33,6840-6851,2020.
S. Bond-Taylor, A. Leach, Y. Long and C. G. Willcocks, "Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7327-7347, 1 Nov. 2022. https://doi.org/10.1109/TPAMI.2021.3116668
P. Dhariwal and A. Nichol, "Diffusion Models Beat GANs on Image Synthesis," in Proc. Advances in Neural Information Processing Systems, pp. 8780-8794, Curran Associates, Inc., 2021.
D. Kingma, T. Salimans, B. Poole, and J. Ho, "Variational Diffusion Models," in Advances in Neural Information Processing Systems, pp. 21696-21707, Curran Associates, Inc., 2021.
L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, "Diffusion Models: A Comprehensive Survey of Methods and Applications," arXiv preprint arXiv:2209.00796, 2023. https://doi.org/10.48550/arXiv.2209.00796
J. Wyatt, A. Leach, S. M. Schmon and C. G. Willcocks, "AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 649-655, https://doi.org/10.1109/CVPRW56347.2022.00080
L. Zhou, H. Liu, J. Bae, J. He, D. Samaras, and P. Prasanna, "Self Pre-training with Masked Autoencoders for Medical Image Classification and Segmentation," arXiv preprint arXiv:2203.05573, 2023. https://doi.org/10.48550/arXiv.2203.05573
Y. Tang et al., "Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 20698-20708, https://doi.org/10.1109/CVPR52688.2022.02007
E. H. Eldeeb, A. M. Nagah, I. A. S. Amin, H. Kamel, and S. Fouad, "A Robust CNN Model for Diagnosis of COVID-19 Based on CT Scan Images and DL Techniques," in International Journal of Electronics and Telecommunications, vol. 68, no. 4, pp. 731–739, 2022. DOI: 10.24425/ijet.2022.143879. https://doi.org/10.24425/ijet.2022.143879
A. van den Oord, Y. Li, and O. Vinyals, "Representation Learning with Contrastive Predictive Coding," arXiv preprint arXiv:1807.03748, 2019. https://doi.org/10.48550/arXiv.1807.03748
R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua Bengio, "Learning Deep Representations by Mutual Information Estimation and Maximization," 2019. https://doi.org/10.48550/arXiv.1808.06670
P. Bachman, R. D. Hjelm, and W. Buchwalter, "Learning Representations by Maximizing Mutual Information Across Views," in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2019.
J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou, "TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation," arXiv preprint arXiv:2102.04306, 2021. https://doi.org/10.48550/arXiv.2102.04306
U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani et al., "The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification," arXiv preprint arXiv:2107.02314, 2021. https://doi.org/10.48550/arXiv.2107.02314
Ronneberger, O., Fischer, P. and Brox, T. Ronneberger. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351:234–41. 2015. https://doi.org/10.1007/978-3-319-24574-4_28
O. Oktay, J. Schlemper, L. Le Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, "Attention U-Net: Learning Where to Look for the Pancreas," eprint arXiv:1804.03999, 2018. https://doi.org/10.48550/arXiv.1804.03999
V. Badrinarayanan, A. Kendall and R. Cipolla, "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 1 Dec. 2017. https://doi.org/10.1109/TPAMI.2016.2644615
J. Shang, T. Ma, C. Xiao, and J. Sun, "Pre-training of Graph Augmented Transformers for Medication Recommendation," arXiv preprint arXiv:1906.00346, 2019. https://doi.org/10.48550/arXiv.1906.00346
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," arXiv preprint arXiv:2010.11929, 2021. https://doi.org/10.48550/arXiv.2010.11929
T. Reiss, N. Cohen, L. Bergman and Y. Hoshen, "PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 2805-2813, 2021. https://doi.org/10.1109/CVPR46437.2021.00283
Downloads
Published
Issue
Section
License
Copyright (c) 2023 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.