Semi-PROPELLER Compressed Sensing Image Reconstruction with Enhanced Resolution in MRI
Abstract
Magnetic Resonance Imaging (MRI) reconstruction algorithm using semi-PROPELLER compressed sensing is pre- sented in this paper. It is exhibited that introduced algorithm for estimating data shifts is feasible when super- resolution is applied. The offered approach utilizes compressively sensed MRI PROPELLER sequences and improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Compressed sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were traditionally thought necessary. It is shown that the presented approach improves MR spatial resolution in cases when Compressed Sensing (CS) sequences are used. The application of CS in medical modalities has the potential for significant scan time reductions, with visible benefits for patients and health care economics. These methods emphasize on maximizing image sparsity on known sparse transform do- main and minimizing fidelity. This diagnostic modality struggles with an inherently slow data acquisition process. The use of CS to MRI leads to substantial scan time reductions and visible benefits for patients and economic factors. In this report the objective is to combine Super-Resolution image enhancement algorithm with both PROPELLER sequence and CS framework. All the techniques emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The motion estimation algorithm being a part of super resolution reconstruction (SRR) estimates shifts for all blades jointly, emphasizing blade-pair correlations that are both strong and more robust to noise.
References
R. Gribonval and M. Nielsen, Sparse representation in unions of bases. IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3320-3325, 2003.
D. L. Donoho, Compressed Sensing. IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, 2006.
M. J. Wainwright, Sharp thresholds for high-dimensional and noisy recovery of sparsity. Proceedings of 44th Allerton Conference on Communications, Control and Computing, Monticello, IL, 2006.
K. Malczewski and R. Stasinski, Super resolution for multimedia, image, and video processing applications. ecent Advances in Multimedia Signal Processing and Communications, vol. 231, pp. 171–208, 2009.
K. Malczewski, Breaking the Resolution Limit in Medical Image Modal-
ities. Proceedings of The 2012 International Conference on Image Processing, Computer Vision, and Pattern Recognition, World- Comp 2012, USA, (2012).
J.Pipe,etal.,RevisedmotionestimationalgorithmforPROPELLERMRI. N. R.; Magn Reson Med. 2013 Sep 4.
M. Lustig, et al. Compressed Sensing MRI. PSignal Processing Maga- zine, IEEE, 2008.
K. Malczewski and R. Stasinski High resolution MRI image reconstruc- tion from a PROPELLER data set of samples. International Journal of Functional Informatics and Personalised Medicine, Volume 1, Number 3/2008, (2008).
M. Lustig, et al. Sparse MRI: The application of compressed sensing for rapid MR imaging. Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magnetic Resonance Medicine, 2007.
M. I. Sezan and A. M. Tekalp, Iterative image restoration with ringing suppression using the method of POCS. Acoustics, Speech, and Signal Processing, 1988.
F. Sebert, et al. Toeplitz block matrices in compressed sensing and their applications in imaging. Proceedings of the International Conference on Information Technology and Applications in Biomedicine (ITAB ’08), pp. 47–50, Shenzhen, China, 2008.
R. G. Baraniuk, et al. A simple proof of the restricted isometry principle for random matrices. Constructive Approximation, 2007.
E.Candes,etal.Robustuncertaintyprinciples:Exactsignalreconstruc- tion from highly incomplete frequency information. IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, 2006.
Downloads
Published
Issue
Section
License
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.