Derivation of Closed-Form Design Equations for Idealized Operation of Inverse Class-E Power Amplifiers at Any Duty Ratio
Abstract
Complementary to the conventional class-E topology, inverse class-E operation has several advantages over the class-E counterpart, such as lower peak switch voltage and smaller circuit inductance, which are attractive to high power RF design and MMIC implementation. This paper derives the closed-form design equations that can be used to synthesize the idealized operation of inverse class-E power amplifiers at any switch duty ratio. Calculation of the key design parameters, such as the maximum switch voltage and circuit components values, is elaborated and compared with the case of conventional class-E operation. Further, the theoretical analysis is confirmed and verified by numerical simulations performed on a 500mW, 2.4GHz idealized inverse class-E power amplifier.References
N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 3, pp. 168–176, Jun. 1975.
F. H. Raab, “Idealized operation of the Class-E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. CAS-24, no. 12, pp. 725–735, Dec. 1977.
J. S.Walling, S. S. Taylor, and D. J. Allstot, “A class-G supply modulator and class-E PA in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2339–2347, Sept. 2009.
K. Chen and D. Peroulis, “Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3162–3173, Dec. 2008.
M. Yousefi, Z. D. Koozehkanani, H. Jangi, N. Nasirzadeh, and J. Sobhi, “A -5 dBm 400MHz OOK Transmitter for Wireless Medical Application,” Intl. J. Electronics and Telecommunications, vol. 60, no. 2, pp.
–198, Jul. 2014.
F. Ellinger, U. Lott, and W. Bachtold, “Design of a low-supply-voltage high-efficiency class-E voltage-controlled MMIC oscillator at C-band,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 203–206, Jan. 2001.
N. Deltimple, Y. Deval, D. Belot, and E. Kerherve, “Design of class-E power VCO in 65nm CMOS technology: Application to RF transmitter architecture,” in IEEE International Symposium on Circuits and Systems, Seattle, WA, May 2008, pp. 984–987.
F. You, B. Zhang, Z. Hu, and S. He, “Analysis of a broadband high-efficiency switch-mode supply modulator based on a class-E amplifier and a class-E rectifier,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 2934–2948, Aug. 2013.
H. Sarnago, O. Luca, A. Mediano, and J. M. Burdo, “A Class-E direct AC-AC converter with multicycle modulation for induction heating systems,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2521–2530, May 2014.
S. Aldhaher, P. C.-K. Luk, A. Bati, and J. F. Whidborne, “Wireless power transfer using class E inverter with saturable DC-feed inductor,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2710–2718, Jul./Aug. 2014.
Y.-S. Lee, M.-W. Lee, S.-H. Kam, and Y.-H. Jeong, “A high-efficiency GaN-based power amplifier employing inverse class-E topology,” IEEE Microw. Compon. Lett., vol. 19, no. 9, pp. 593–595, Sept. 2009.
M. Thian and V. Fusco, “Idealised operation of zero-voltage-switching series-L/parallel-tuned Class-E power amplifier,” IET Circuits Devices Syst., vol. 2, no. 3, pp. 337–346, 2008.
D. J. Kessler and M. K. Kazimierczuk, “Power losses and efficiency of class-E power amplifier at any duty ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1675–1689, Sept. 2004.
I. Aoki, S. Kee, R. Magoon, R. Aparicio, F. Bohn, J. Zachan, G. Hatcher, D. McClymont, and A. Hajimiri, “A fully-integrated quadband GSM/GPRS CMOS power amplifier,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2747–2758, Dec. 2008.
L. L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin, “Analog circuit design in nanoscale CMOS technologies,” Proc. IEEE, vol. 97, no. 10, pp. 1687–1714, Oct. 2009.
Y. Song, S. Lee, E. Cho, J. Lee, and S. Nam, “A CMOS class-E power amplifier with voltage stress relief and enhanced efficiency,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 310–317, Feb. 2010.
M.-H. Han, H.-B. Chen, C.-J. Chang, C.-C. Tsai, and C.-Y. Chang, “Improving breakdown voltage of LDMOS using a novel cost effective design,” IEEE Trans. Semicond. Manuf., vol. 26, no. 2, pp. 248–252, May 2013.
J. A. Alamo and M. H. Somerville, “Breakdown in millimeter-wave power InP HEMT’s: A comparison with GaAs PHEMT’s,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1204–1211, Sept. 1999.
M. Wang and K. J. Chen, “Improvement of the off-state breakdown voltage with Fluorine Ion implantation in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 460–465, Feb. 2011.
H.-Y. Tsui and J. Lau, “An on-chip vertical solenoid inductor design for multigigahertz CMOS RFIC,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1883–1890, Jun. 2005.
J. Wight and J. R. Long, “On-die synthesized inductors: Boon or bane?” IEEE Microw. Mag., vol. 11, no. 3, pp. 95–104, May 2010.
N. M. Nguyen and R. G. Meyer, “Si IC-compatible inductors and LC passive filters,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1028–1031, Aug. 1990.
Downloads
Published
Issue
Section
License
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.