A 1.67 pJ/Conversion-step 8-bit SAR-Flash ADC Architecture in 90-nm CMOS Technology
Abstract
A novice advanced architecture of 8-bit analog to
digital converter is introduced and analyzed in this work. The
structure of proposed ADC is based on the sub-ranging ADC
architecture in which a 4-bit resolution flash-ADC is utilized. The
proposed ADC architecture is designed by employing a comparator
which is equipped with common mode current feedback and
gain boosting technique (CMFD-GB) and a residue amplifier. The
proposed 8 bits ADC structure can achieve the speed of 140 megasamples
per second. The proposed ADC architecture is designed
at a resolution of 8 bits at 10 MHz sampling frequency. DNL and
INL values of the proposed design are -0.94/1.22 and -1.19/1.19
respectively. The ADC design dissipates a power of 1.24 mW
with the conversion speed of 0.98 ns. The magnitude of SFDR
and SNR from the simulations at Nyquist input is 39.77 and 35.62
decibel respectively. Simulations are performed on a SPICE based
tool in 90 nm CMOS technology. The comparison shows better
performance for the proposed ADC design in comparison to
other ADC architectures regarding speed, resolution and power
consumption.
References
Y. Zhou, B. Xu and Y. Chiu, “A 12-b 1-GS/s 31.5-mW Time-Interleaved SAR ADC with Analog HPF-Assisted Skew Calibration and Randomly Sampling Reference ADC,” IEEE Journal of Solid-State Circuits 54, 8, 2207-2218, (2019). https://doi.org/10.1109/JSSC.2019.2915583.
D. Oh, J. Kim, D. Jo, W. Kim, D. Chang and S. Ryu, “A 65-nm CMOS 6-bit 2.5-GS/s 7.5-mW 8 x Time-Domain Interpolating Flash ADC With Sequential Slope-Matching Offset Calibration,” IEEE Journal of Solid-State Circuits 54, 1, 288 297, (2019). https://doi.org/10.1109/JSSC.2018.2870554.
M. Guo, J. Mao, S. Sin, H. Wei and R. P. Martins, “A 1.6-GS/s 12.2-mW Seven-/Eight-Way Split Time-Interleaved SAR ADC Achieving 54.2-dB SNDR With Digital Background Timing Mismatch Calibration,” IEEE Journal of Solid-State Circuits 55, 3,693-705, (2020). https://doi.org/10.1109/JSSC.2019.2945298.
D. Chang, W. Kim, M. Seo, H. Hong, and S. Ryu, “Normalized-Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC.”, IEEE Transactions on Circuits and Systems I: Regular Papers. 64, 2, 322-332 (2017). https://doi.org/10.1109/TCSI.2016.2612692
D. Zhang and A. Alvandpour, “A 12.5-ENOB 10-kS/s Redundant SAR ADC in 65-nm CMOS”, IEEE Transactions on Circuits and Systems II: Express Briefs 63, 3, 244-248, (2016). https://doi.org/10.1109/TCSII.2015.2482618.
S.A. Zahrai, M. Onabajo, “Review of Analog-To-Digital Conversion Characteristics and Design Considerations for the Creation of Power-Efficient Hybrid Data Converters.”, J. Low Power Electron. Appl. 8, 12, (2018). https://doi.org/10.3390/jlpea8020012
S.Taheri, J. Lin, J. S. Yuan, “Security Interrogation and Defense for SAR Analog to Digital Converter.”, Electronics 6, 48, (2017).
https://doi.org/10.3390/electronics6020048
L. Wang, M. LaCroix and A. C. Carusone, “A 4-GS/s Single Channel Reconfigurable Folding Flash ADC for Wireline Applications in 16-nm
FinFET.”, IEEE Transactions on Circuits and Systems II: Express Briefs 64, 12, 1367-1371, (2017). https://doi.org/10.1109/TCSII.2017.2726063
Masumeh Damghanian, Seyed Javad Azhari, “A low-power 6-bit MOS CML flash ADC with a novel multi-segment encoder for UWB applications.”, Integration 57, 158-168, (2017). https://doi.org/10.1016/j.vlsi.2017.01.006
A. Khatak, M. Kumar, S. Dhull, “An Improved CMOS Design of Op-Amp Comparator with Gain Boosting Technique for Data Converter Circuits.”, J. Low Power Electron. Appl. 8, 33, (2018). https://doi.org/10.3390/jlpea8040033.
B. Hershberg et al., “3.6 A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm,” 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA 68-70, (2019). https://doi.org/10.1109/ISSCC.2019.8662319.
Young-Deuk Jeon et al., “A dual-channel pipelined ADC with sub-ADC based on flash-SAR architecture.”, Circuits and Systems II: Express Briefs 59, 741-745. (2012). https://doi.org/10.1109/TCSII.2012.2222837
Y. Lin et al., “A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS.”, IEEE Transactions on Circuits and Systems I: Regular Papers 60, 3, 570-581, (2013). https://doi.org/10.1109/TCSI.2012.2215756
J. Xu, et al., “Low-leakage analog switches for low-speed sample-and-hold circuits”, Microelectronics Journal 76, 22–27, (2018). https://doi.org/10.1016/j.mejo.2018.04.008
H.S. Bindra et al., “A 1.2-V Dynamic Bias Latch-Type Comparator in 65-nm CMOS With 0.4-mV Input Noise.”, IEEE Journal of Solid-State Circuits 53, 7, 1902-1912, (2018). https://doi.org/10.1109/JSSC.2018.2820147
J. Lagos, B. P. Hershberg, E. Martens, P. Wambacq and J. Craninckx, “A 1-GS/s, 12-b, Single-Channel Pipelined ADC With Dead-Zone- Degenerated Ring Amplifiers,” IEEE Journal of Solid-State Circuits 54, 3, 646-658, (2019).https://doi.org/10.1109/JSSC.2018.2889680.
B. Murmann, “The successive approximation register ADC: a versatile building block for ultra-low- power to ultra-high-speed applications.” IEEE Communications Magazine 54, 4, 78-83, (2016).https://doi.org/10.1109/MCOM.2016.7452270
T. Ogawa et al., “Non-binary SAR ADC with digital error correction for low power applications,” 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur196-199, (2010). https://doi.org/10.1109/APCCAS.2010.5774747.
S. Lee, A.P. Chandrakasan and H. Lee, “A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC with Background Timing Skew Calibration.”, IEEE Journal of Solid-State Circuits 49, 12, 2846-2856, (2014). https://doi.org/10.1109/JSSC.2014.2362851
Yi. Shen and Z. Zhu, “Analysis and optimization of the two-stage pipelined SAR ADCs.”, Microelectronics Journal 47, 1–5, (2016). https://doi.org/10.1016/j.mejo.2015.10.018.
Rui Ma, Lisha Wang, Dengquan Li, Ruixue Ding, Zhangming Zhu,“A 10-bit 100-MS/s 5.23 mW SAR ADC in 0.18 μm CMOS.” Microelectronics Journal 78, 63-72, (2018). https://doi.org/10.1016/j.mejo.2018.06.007
W. Guo, S. Liu, and Z. Zhu, “ An asynchronous 12-bit 50MS/s rail-to-rail Pipeline-SAR ADC in 0.18 μm CMOS.”, Microelectronics Journal 52, 23–30, (2016). https://doi.org/10.1016/j.mejo.2016.03.003
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.