Analysis of a novel FPGA-based system for filtering audio signals using a finite impulse response filters

Authors

Abstract

In this article, an analysis of an innovative system for filtering signals in the audible range (16 Hz - 20 kHz) on programmable logic devices using a filters with a finite impulse response, is presented. Mentioned system was neat combination of software and hardware platform, where in the program layer a multiple programming languages including VHDL, JavaScript, Matlab or HTML were used to create completely useful application. To determine the coefficients of polynomial filters the
Matlab Filter Design & Analysis Tool was used. Thanks to the developed graphic layer, a user-friendly interface was created, which allows easily transfer the required coefficients from the computer to the executive system. The practical implementation made on the FPGA platform, specifically on the Altera DE2-115 development kit with the FPGA Cyclone IV, was compared with simulation realization of Matlab FIR filters. The performed research confirm the effectiveness of filtration in real time with up to 128th order of the filter for both audio channels simultaneously
in FPGA-based system.

References

E. Salgado-Plasencia, R.V. Carrillo-Serrano, M. Toledano-Ayala, ”Development of a DSP Microcontroller-Based Fuzzy Logic Controller for Heliostat Orientation Control”, Applied Sciences 10 (5), 1598, https://doi.org/10.3390/app10051598, (2020).

X. Gong, Z. Le, H. Wang, Y. Wu, ”Study on the Moving Target Tracking Based on Vision DSP”, Sensors 20 (22), 6494, https://doi.org/10.3390/s20226494, (2020).

Q. Guo, Z. Dong, H. Liu, X. You, ”Nonlinear Characteristics Compensation of Inverter for Low-Voltage Delta-Connected Induction Motor”, Energies 13 (3), 590, ttps://doi.org/10.3390/en13030590, (2020).

Ch.T. Ma, Z.H. Gu, ”Design and Implementation of a GaN-Based Three-Phase Active Power Filter”, Micromachines 11 (2), 134, https://doi.org/10.3390/mi11020134, (2020).

S. Cuoghi, R. Mandrioli, L. Ntogramatzidis, G. Gabriele, ”Multileg Interleaved Buck Converter for EV Charging: Discrete-Time Model and Direct Control Design”, Energies 13 (2), 466, https://doi.org/10.3390/en13020466, (2020).

W. Yao, J. Cui, W. Yao, ”Single-Phase Inverter Deadbeat Control with One-Carrier-Period Lag”, Electronics 9 (1), 154, DOI:10.3390/electronics9010154, (2020).

G. La Tona, M. Luna, M.C. Piazza, M. Pucci, A. Accetta, ”Development of a High-Performance, FPGA-Based Virtual Anemometer for Model-Based MPPT of Wind Generators”, Electronics 9 (1), 83,

https://doi.org/10.3390/electronics9010083, (2020).

X. Li, N. Wang, G. San, X. Guo, ”Current Source AC-Side Clamped Inverter for Leakage Current Reduction in Grid-Connected PV System”, Electronics 8 (11), 1296, https://doi.org/10.3390/electronics8111296, (2019).

B. Wang, W. Tang, ”A Novel Three-Switch Z-Source SEPIC Inverter”, Electronics 8 (2), 247, https://doi.org/10.3390/electronics8020247, (2019).

X. Sun, Ch.J. Xue, J. Yu, T.W. Kuo, X. Liu, ”Accelerating data filtering for database using FPGA”, Journal of Systems Architecture 114, 101908, https://doi.org/10.1016/j.sysarc.2020.101908, (2021).

R. Guo, ”Strength Fitness Control System and Motor balance Based on FPGA and Wireless Sensors”, Microprocessors and Microsystems 81, 103684, https://doi.org/10.1016/j.micpro.2020.103684, (2021).

S. Kim, U. Yun, J. Jang, G. Seo, J. Kang, H.N. Lee, M. Lee, ”Reduced Computational Complexity Orthogonal Matching Pursuit Using a Novel Partitioned Inversion Technique for Compressive Sensing”, Electronics 7 (9), 206, https://doi.org/10.3390/electronics7090206, (2018).

A. Lipowski, ”Developing DSP techniques in FPGA systems (in Polish)”, Bachelor’s Thesis, Opole University of Technology, (2019).

M. Skiwski, ”Cyfrowa filtracja sygnał´ow z wykorzystaniem układów FPGA”, Pomiary Automatyka Kontrola 59 (6), 503–506 (2013).

C.J. Kikkert, ”A Phasor Measurement Unit Algorithm Using IIR Filters for FPGA Implementation”, Electronics 8 (12), 1523, https://doi.org/10.3390/electronics8121523, (2019).

F. Nekoei, Y.S. Kavian, O. Strobel, ”Some schemes of realization digital FIR filters on FPGA for communication applications”, In the proceedings of 20th International Crimean Conference ”Microwave Telecommunication Technology”, 616–619, DOI:10.1109/CRMICO.2010.5632348, (2010).

R.R. Sudharsan, ”Synthesis of FIR Filter using ADC-DAC: A FPGA Implementation”, In the proceedings of IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES), 1–3, DOI:10.1109/INCCES47820.2019.9167696, (2019).

H.S.O. Migdadi, R,A. Abd-Alhameed, H.A. Obeidat, J.M. Noras, E.A.A. Qaralleh, M.J. Ngala, ”FIR implementation on FPGA: Investigate the FIR order on SDA and PDA algorithms”, In the proceedings

of Internet Technologies and Applications (ITA), 417–421, DOI:10.1109/ITechA.2015.7317439, (2015).

D. Datta, S. Akhtar, H.S. Dutta, ”FPGA Implementation of Symmetric Systolic FIR Filter using Multi-channel Technique”, In the proceedings of IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS), 225–228, DOI:10.1109/VLSIDCS47293.2020.9179926, (2020).

M.M. Shahbaz, A. Wakeel, Junaid-ur-Rehman, B. Khan, ”FPGA Based Implementation of FIR Filter for FOFDM Waveform”, In the proceedings of 2nd International Conference on Communication, Computing and Digital systems (C-CODE), 226–230, DOI:10.1109/CCODE.2019.8681005, (2019).

M. Krzysiek, ”Digital filters realizations for TMS320 signal processors”, Master Thesis, Wrocław University of Science and Technology, (2006).

Intel/Altera, ”Terasic DE2-115 User manual”, Technical data sheet, (2013).

Handson Technology, ”Intel Audio Core for Intel DE Series Boards”, User guide, (2020).

Intel, ”Intel Audio Core for Intel DE Series Boards”, Technical data sheet, (2020).

T. Łuba, ”Synthesis of digital circuits (in Polish)”, Wydawnictwa Komunikacji i Łączności, (2003).

Downloads

Published

2024-04-19

Issue

Section

ARTICLES / PAPERS / General