Characterization of Propagation Models at 5G Network and Effects of SAR on Human Brain
Abstract
Nowadays, the world is turning into technology, fast internet and high signal quality. To ensure high signal quality, the network planners have to predict the pathloss and signal strength of the transmitted signal at specific distances in the design stage. The aim of this research is to provide a generalized pathloss model to suit the urban area in Muscat Governorate in the Sultanate of Oman. The research covers 5G network pathloss in the Muttrah Business District (MBD) area. It includes Close In (CI) model and Alpha Beta Gamma (ABG) model with 3.45GHz. The results of 5G models were compared with real experimental data in MBD by calculating Root Mean Square Error RMSE. Other cells at MBD area were used for reverification. To validate the modified pathloss models of 5G, they were applied at different cells in Alkhoud area. Furthermore, this paper also deals the effect of Specific Absorption Rate (SAR) on the human brain for ensuring safety due to close proximity to cell towers. The SAR values were calculated indirectly from the electric field strength of different antennas. Calculated results were compared with the international standards defined limits on the human brain.References
G. Barb and M. Otesteanu, "4G/5G: A Comparative Study and Overview on What to Expect from 5G," in 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), 2020, pp. 37-40.
W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, "The Road Towards 6G: A Comprehensive Survey," IEEE Open Journal of the Communications Society, vol. 2, pp. 334-366, 2021.
Z. Nadir, H. A. Lawati, and M. A. Rashdi, "Propagation Measurements and Pertinency of Models for Communications Systems in Oman " American Journal of Science & Engineering (AJSE), vol. 1, p. xxxxx, 2020.
M. H. Mahmud, K. Khaleduzzaman, S. Sarker, and L. C. Paul, "Effect of Path Loss Models on Performance of 5G Compatible MIMO WINDOW-OFDM Systems," in 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), 2020, pp. 257-262.
A. Zreikat and M. Djordjevic, "Performance Analysis of Path loss Prediction Models in Wireless Mobile Networks in Different Propagation Environments," in Proceedings of the 3rd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'17), Rome, Italy, 2017, pp. 103-1-103-11.
F. Qamar, T. Abbas, M. N. Hindia, K. B. Dimyati, K. A. B. Noordin, and I. Ahmed, "Characterization of MIMO propagation channel at 15 GHz for the 5G spectrum," in 2017 IEEE 13th Malaysia International Conference on Communications (MICC), 2017, pp. 265-270.
Z. Nadir and H. A. Lawati, "LTE path-loss prediction models' comparative study for outdoor wireless communications," in 7th Brunei International Conference on Engineering and Technology 2018 (BICET 2018), 2018, pp. 1-4.
Z. Nadir and M. Bait-Suwailam, "Pathloss Analysis at 900 MHz for Outdoor Environment," presented at the International Conference on Communications, Signal Processing and Computers, 2014.
Y. Li and M. Lu, "Study on SAR Distribution of Electromagnetic Exposure of 5G Mobile Antenna in Human Brain," 2020.
J. Michalowska, A. Wac-Włodarczyk, and J. Kozieł, "Monitoring of the Specific Absorption Rate in Terms of Electromagnetic Hazards," Journal of Ecological Engineering, vol. 21, pp. 224-230, 2020.
A. D. Sonawane and D. S. Bormane, "A Specific Absorption Rate in Human Head due to Mobile Phone Radiations: Review," in 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020, pp. 703-707.
A. Karunarathna, C. A. Fernando, and P. Samarasekara, "Effect of shape, size and electrical properties on specific absorption rate (SAR)," International Journal of Research and Engineering, vol. 6, 06/01 2019.
Y. Zhang, S. Jyoti, C. R. Anderson, D. J. Love, N. Michelusi, A. Sprintson, et al., "28-GHz Channel Measurements and Modeling for Suburban Environments," in 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1-6.
M. Hamid, "Measurement Based Statistical Model for Path Loss Prediction for Relaying Systems Operating in 1900 MHz Band," Doctorate, Semantic Scholar, 2014.
T. S. Rappaport, Wireless Communications Principles and Practice: Prentice Hall, 2002.
ITU, "Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz," ed. USA: Internatinal Telecommunication Union, 2017, pp. 1-54.
A. Rashid O. Mumi, R. Alias, J. Abdullah, S. Haimi Dahlan, and J. Ali, "Assessment of Electromagnetic Absorption towards Human Head Using Specific Absorption Rate," 2018, vol. 7, p. 8, 2018-12-01 2018.
I. C. Society., "IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz," IEEE Std C95.1-2019 (Revision of IEEE Std C95.1-2005/ Incorporates IEEE Std C95.1-2019/Cor 1-2019), pp. 1-312, 2019.
ICNIRP, "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection," Health Phys, vol. 74, pp. 494-522, Apr 1998.
I. A. Maawali, "Assessment of Electromagnetic Fields Exposure of Telecom Sites," T. R. A. Oman, Ed., ed, 2020.
MASCHEK, "SAR meter ESM 120," ed. Germany, 2007.
H. A. Jalal Baayer, "Invention of an Original Tetra-Generations Patch Antenna for the New Generation of Mobile Telephony and the Study of the Thermal Effect of GSM on the Human Head and Hand," presented at the Proceedings of the Third International Conference on Computing and Wireless Communication Systems, ICCWCS 2019, Faculty of Sciences, Ibn Tofaïl University -Kénitra- Morocco, 2019.
Giangrandi. (2012, 20 February 2021). Field generated by a transmitter at a given distance. Available: https://www.giangrandi.ch/electronics/anttool/tx-field.shtml
T. B. Rashid and H. H. Song, "Analysis of biological effects of cell phone radiation on human body using specific absorption rate and thermoregulatory response," Microwave and Optical Technology Letters, vol. 61, pp. 1482-1490, 2019/06/01 2019.
N. Carrara. (28 Januyary 2021). Dielectric Properties of Body Tissues in the frequency range 10 Hz - 100 GHz. Available: http://niremf.ifac.cnr.it/tissprop/#over
Downloads
Published
Issue
Section
License
Copyright (c) 2022 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.