The analytical framework for optimizing TCP retransmission algorithm based on adjustment of its EWMA parameters.
Abstract
In this paper we derive mathematical description of TCP (Transmission Control Protocol) retransmission probability based on Jacobson’s smoothing algorithm that belongs to EWMA (Exponentially Weighted Moving Average) category. This description is parametrized on the probability density function (pdf) of RTT (Round Trip Time) samples and α, β – two primary parameters of Jacobson’s algorithm. Although it is not a close form expression, it is formulated as an effective algorithm that let us to explicitly calculate the values of RTO (Retransmission Time Out) probability as a function of α, β and the pdf of RTT samples. We achieve the effectiveness of this approach by applying smart discretization of the state space and replacement of continuous functions with discrete approximate equivalents. In this way, we mitigate the cardinality of discrete distributions we deal with that results in linear (n+m) instead of multiplicative (n⋅m) growth of computational complexity. We provide the evaluation of RTO probability for a wide set of α, β parameter values and differently shaped Normal and Laplace pdfs the RTT samples are taken from. The obtained numerical results let us to draw some conclusions regarding the choice of optimal values of α, β parameters as well as the impact of pdf the RTT samples are taken from.References
Postel, J., (1981), Transmission control protocol, IETF RFC 793.
Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., Schooler, E., (2002), SIP: Session Initiation Protocol. IETF RFC 3261.
Postel, J., (1980), User Datagram Protocol, IETF RFC 768.
Shelby, Z., Hartke, K., Bormann, C., (2014), The Constrained Application Protocol (CoAP), IETF RFC 7252, 2014.
Rathod, V. J. and Tahiliani, M. P., (2020a), Geometric Sequence Technique for Effective RTO Estimation in CoAP, In IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 2020, pp. 1-6, doi: 10.1109/ANTS50601.2020.9342748.
Rathod, V. J., Krishnam, S., Kumar, A., Baraskar, G., Tahiliani, M. P., (2020b), Effective RTO estimation using Eifel Retransmission Timer in CoAP," In IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2020, pp. 1-6, doi: 10.1109/CONECCT50063.2020.9198559.
Loukili, A., Wijesinha, A. L., Karne, R. K., Tsetse, A. K., (2012), TCP's Retransmission Timer and the Minimum RTO, In 21st International Conference on Computer Communications and Networks (ICCCN), Munich, Germany, 2012, pp. 1-5, doi: 10.1109/ICCCN.2012.6289266.
Psaras, I., Tsaoussidis, V. (2007), The TCP Minimum RTO Revisited. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., Oliveira, J.C.d., McNair, J. (eds) NETWORKING 2007, Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet. NETWORKING 2007. Lecture Notes in Computer Science, vol 4479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72606-7_84
Ma, L., Barner, K. E., Arce, G.R., (2006), Statistical analysis of TCP's retransmission timeout algorithm, IEEE/ACM Transactions on Networking, 14, 2, (April 2006), 383-396. https://doi.org/10.1109/TNET.2006.872577.
Ma, L., Arce, G., Barner, K., (2004), TCP Retransmission Timeout Algorithm Using Weighted Medians, IEEE Signal Processing Letters, vol. 11, No. 6, June 2004 pp. 569-572.
Janowski, R., Grabowski, M., Arabas, P, (2020), New Heuristics for TCP Retransmission Timers. In: Burduk, R., Kurzynski, M., Wozniak, M. (eds) Progress in Computer Recognition New Heuristics for TCP Retransmission Timers Systems. CORES 2019. Advances in Intelligent Systems and Computing, vol 977. Springer, Cham. https://doi.org/10.1007/978-3-030-19738-4_13.
Nikzad, N., Jamshidi, K., Bohlooli, A., Faqiry, F. M., (2022), An accurate retransmission timeout estimator for content-centric networking based on the Jacobson algorithm, Digital Communications and Networks, Volume 8, Issue 6, 2022, Pages 1085-1093, ISSN 2352-8648, https://doi.org/10.1016/j.dcan.2022.03.006.
Jacobson, V., Congestion avoidance and control, (1988), In Proc. SIGCOMM'88, Stanford, CA, Aug. 1988, pp. 314-329.
Pereyra, M. C., Ward, L. A., (2010), Harmonic Analysis. From Fourier to Wavelets, Student Mathematical Library, 2010, ISBN 978-0-8218-7566-7.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.