High – Gain and Wide – Bandwidth Patch Antenna for Fifth Generation Communication Applications at K - Band

Authors

  • Safa Nassr Nafea
  • Nasser N. Khamiss

Abstract

The patch antenna usually used for many wireless applications, and fifth generation (5G) is the most attracting application in the field of millimeter wave communications recently. The researchers worked on solving problems those considered milestones against using patch antenna for 5G applications such as being an antenna with moderate gain and narrow operating bandwidth with high side lobe levels. In this article a microstrip patch antenna had been presented to operate over the n258 – Band for 5G communications at 26 GHz with an operating bandwidth around than 7 GHz. The proposed antenna was printed on Rogers RT/Duroid 5880 substrate. A high gain of 8.10 dB had been achieved with high Front – to – Back  ratio of 24.47 dB and very low side lobe levels far field radiation pattern around -17 dB. The proposed antenna covered the operating bandwidth n258 for fifth generation applications in range of  (24.25 – 27.50) GHz. The Computer simulation Technology (CST) had been used as a simulation environment for this design.

References

S. N. Nafea, A. Ismail, and R. S. A. R. Abdullah, “Low Side Lobe Level Multilayer Antenna for Wireless Applications,” Progress In Electromagnetics Research, vol. 58, no. January 2016, pp. 105–111, 2016.

S. Ye et al., “Design of arbitrarily shaped planar microstrip antenna arrays with improved efficiency,” International Journal of Antennas and Propagation, vol. 2013, 2013, doi: 10.1155/2013/757061. DOI: 10.1155/2013/757061

C. Arora, S. S. Pattnaik, and R. N. Baral, “SRR superstrate for gain and bandwidth enhancement of microstrip patch antenna array,” Progress In Electromagnetics Research B, vol. 76, no. 1, pp. 73–85, 2017, doi: 10.2528/PIERB17041405. DOI: 10.2528/PIERB17041405

A. R. Vaidya, R. K. Gupta, and S. K. Mishra, “Right-Hand / Left-Hand Circularly Polarized High-Gain Antennas Using Partially Re fl ective Surfaces,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 431–434, 2014.

B. Lv, X. Wang, C. Zheng, J. Huangfu, C. Li, and L. Ran, “Radiation Enhancement for Standard Patch Antennas Using a Loosely Grooved Ground Plane,” IEEE Antennas and Wireless Propagation Letters, vol. 11, no. 1, pp. 604–607, 2012, doi: 10.1109/LAWP.2012.2202364. DOI: 10.1109/LAWP.2012.2202364

A. S. Mekki, M. N. Hamidon, A. Ismail, and A. R. H. Alhawari, “Gain Enhancement of a Microstrip Patch Antenna Using a Reflecting Layer,” International Journal of Antennas and Propagation, vol. 2015, p. 7, 2015.

N. Q. A. Alshaikhli, M. A. Neamah, and M. I. Aal-Nouman, “Design of triband antenna for telecommunications and network applications,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 2, pp. 1084–1090, 2022, doi: 10.11591/eei.v11i2.3233. DOI: 10.11591/eei.v11i2.3233

H. Srivastava, A. Singh, A. Rajeev, and U. Tiwari, “Bandwidth and Gain Enhancement of Rectangular Microstrip Patch Antenna (RMPA) Using Slotted Array Technique,” Wireless Personal Communications, vol. 114, no. 1, pp. 699–709, 2020, doi: 10.1007/s11277-020-07388-x. DOI: 10.1007/s11277-020-07388-x

N. Bahari, M. F. Jamlos, and M. M. Isa, “Gain enhancement of microstrip patch antenna using artificial magnetic conductor,” Bulletin of Electrical Engineering and Informatics, vol. 8, no. 1, pp. 166–171, 2019, doi: 10.11591/eei.v8i1.1409. DOI: 10.11591/eei.v8i1.1409

R. Deshmukh, D. Marathe, and K. D. Kulat, “Microstrip Patch Antenna Gain Enhancement using Near-zero Index Metamaterial Superstrate (NZIM Lens),” 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019, pp. 6–11, 2019, doi: 10.1109/ICCCNT45670.2019.8944470. DOI: 10.1109/ICCCNT45670.2019.8944470

S. N. Nafea, “Improving Performance of Patch Antenna For IEEE 802.16e Applications Using Multi-layer Antenna Structure with Reflector,” NTCCIT 2018 - Al Mansour International Conference on New Trends in Computing, Communication, and Information Technology, pp. 18–22, 2019, doi: 10.1109/NTCCIT.2018.8681183. DOI: 10.1109/NTCCIT.2018.8681183

M. L. Hakim, M. J. Uddin, and M. J. Hoque, “28/38 GHz Dual-Band Microstrip Patch Antenna with DGS and Stub-Slot Configurations and Its 2*2 MIMO Antenna Design for 5G Wireless Communication,” 2020 IEEE Region 10 Symposium, TENSYMP 2020, no. June, pp. 56–59, 2020, doi: 10.1109/TENSYMP50017.2020.9230601. DOI: 10.1109/TENSYMP50017.2020.9230601

A. S. B. Mohammed et al., “Mathematical model on the effects of conductor thickness on the centre frequency at 28 GHz for the performance of microstrip patch antenna using air substrate for 5G application,” Alexandria Engineering Journal, vol. 60, no. 6, pp. 5265–5273, 2021, doi: 10.1016/j.aej.2021.04.050. DOI: 10.1016/j.aej.2021.04.050

M. Nahas, “Journal of Radiation Research and Applied Sciences Design of a high-gain dual-band LI-slotted microstrip patch antenna for 5G mobile communication systems,” Journal of Radiation Research and Applied Sciences, vol. 15, no. 4, p. 100483, 2022, doi: 10.1016/j.jrras.2022.100483. DOI: 10.1016/j.jrras.2022.100483

L. G. Ayalew and F. M. Asmare, “Design and optimization of pi-slotted dual-band rectangular microstrip patch antenna using surface response methodology for 5G applications,” Heliyon, vol. 8, no. 12, p. e12030, 2022, doi: 10.1016/j.heliyon.2022.e12030. DOI: 10.1016/j.heliyon.2022.e12030

Y. I. A. Al-Yasir et al., “A new polarization-reconfigurable antenna for 5G wireless communications,” 9th International Conference on Broadband Communications, Networks, and Systems (Broadnets 2018) Sept 19-20, Faro, Portugal, pp. 431–437, 2018, doi: 10.1007/978-3-030-05195-2_42. DOI: 10.1007/978-3-030-05195-2_42

B. R. Swain and A. K. Sharma, “An investigation of dual-band dual-square ring (DSR) based microstrip antenna for WiFi/WLAN and 5G-NR wireless applications,” Progress In Electromagnetics Research M, vol. 86, no. June, pp. 17–26, 2019, doi: 10.2528/pierm19060501. DOI: 10.2528/pierm19060501

K. Mazen, A. Emran, A. S. Shalaby, and A. Yahya, “Design of Multi-band Microstrip Patch Antennas for Mid-band 5G Wireless Communication,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 5, pp. 459–469, 2021, doi: 10.14569/IJACSA.2021.0120557. DOI: 10.14569/IJACSA.2021.0120557

T. Kiran, N. Mounisha, C. Mythily, D. Akhil, and T. V. B. P. Kumar, “Design of Microstrip Patch Antenna for 5g Applications,” IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), vol. 13, no. 1, pp. 14–17, 2018, doi: 10.9790/2834-1301011417. DOI: 10.9790/2834-1301011417

D. Alvarez Outerelo, A. V. Alejos, M. Garcia Sanchez, and M. Vera Isasa, “Microstrip antenna for 5G broadband communications: Overview of design issues,” IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), vol. 2015-Octob, pp. 2443–2444, 2015, doi: 10.1109/APS.2015.7305610. DOI: 10.1109/APS.2015.7305610

D. Imran et al., “Millimeter wave microstrip patch antenna for 5G mobile communication,” 2018 International Conference on Engineering and Emerging Technologies, ICEET 2018, vol. 2018-Janua, pp. 1–6, 2018, doi: 10.1109/ICEET1.2018.8338623. DOI: 10.1109/ICEET1.2018.8338623

H. M. Marzouk, M. I. Ahmed, and A. A. Shaalan, “Novel dual-band 28/38 GHz MIMO antennas for 5g mobile applications,” Progress In Electromagnetics Research C, vol. 93, no. September, pp. 103–117, 2019, doi: 10.2528/PIERC19032303. DOI: 10.2528/PIERC19032303

A. Abdelaziz and E. K. I. Hamad, “Design of a Compact High Gain Microstrip Patch Antenna for Tri-Band 5G Wireless Communication,” Frequenz, vol. 73, no. 1–2, pp. 45–52, 2019, doi: 10.1515/freq-2018-0058. DOI: 10.1515/freq-2018-0058

A. A. A. Saeed, O. Y. A. Saeed, A. S. A. Gaid, A. M. H. Aoun, and A. A. Sallam, “A low Profile Multiband Microstrip Patch Antenna for 5G Mm-Wave Wireless Applications,” 2021 International Conference of Technology, Science and Administration, ICTSA 2021, pp. 0–4, 2021, doi: 10.1109/ICTSA52017.2021.9406519. DOI: 10.1109/ICTSA52017.2021.9406519

K. Belabbas, D. Khedrouche, and A. Hocini, “Artificial magnetic conductor-based millimeter wave microstrip patch antenna for gain enhancement,” Journal of Telecommunications and Information Technology, vol. 2021, no. 1, pp. 56–63, 2021, doi: 10.26636/JTIT.2021.148320. DOI: 10.26636/JTIT.2021.148320

A. R. Sabek, A. A. Ibrahim, and W. A. Ali, “Dual-Band Millimeter Wave Microstrip Patch Antenna with StubResonators for 28/38 GHz Applications,” Journal of Physics: Conference Series, vol. 2128, no. 1, 2021, doi: 10.1088/1742-6596/2128/1/012006. DOI: 10.1088/1742-6596/2128/1/012006

S. N. Nafea and N. N. Khamiss, “For 5G applications, high-gain patch antenna in Ka-Band,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 31, no. 2, pp. 802–809, 2023, doi: 10.11591/ijeecs.v31.i2.pp802-809. DOI: 10.11591/ijeecs.v31.i2.pp802-809

A. Dogra, R. K. Jha, and S. Jain, “A Survey on beyond 5G Network with the Advent of 6G: Architecture and Emerging Technologies,” IEEE Access, vol. 9, pp. 67512–67547, 2021, doi: 10.1109/ACCESS.2020.3031234. DOI: 10.1109/ACCESS.2020.3031234

S. N. Nafea, “Compact multilayer patch antenna for wireless sensing network applications at 5.8 GHz,” Conference on Mathematical Sciences and Applications in Engineering: Cmsae-2021, vol. 2797, p. 050021, 2023, doi: 10.1063/5.0148093. DOI: 10.1063/5.0148093

Additional Files

Published

2024-09-21

Issue

Section

Microwaves and Radiolocation